Bryn Mawr

Return to current Catalog Home

2007-08 Catalog Home

Academic Calendars
2007-08 and 2008-09

About the College

Contact and Web Site Information

Student Responsibilities and Rights

The Academic Program

Academic Opportunities

Academic Awards and Prizes

Libraries and Educational Resources

Student Life


Fees and Financial Aid

Scholarship Funds

Loan Funds

Geographical Distribution of Students

Board of Trustees


Administration and Alumnae Association

Areas of Study

Africana Studies
Arts Program
Athletics and Physical Education
Classical and Near Eastern Archaeology
Comparative Literature
Computer Science
East Asian Studies
Environmental Studies
Film Studies
Fine Arts
French and French Studies
Gender and Sexuality
General Studies
German and German Studies
Greek, Latin and Classical Studies
Growth and Structure of Cities
Hebrew and Judaic Studies
Hispanic and Hispanic-American Studies
History of Art
International Studies
Neural and Behavioral Sciences
Peace and Conflict Studies
Political Science
Romance Languages



Search Bryn Mawr
 Admissions Academics Campus Life News and Events Visit Find


Students may complete a major or minor in Physics. Within the major, students may complete a minor in computational methods or educational studies, or complete the requirements for secondary education certification. Qualified seniors can take graduate courses. Students may complete an M.A. in the combined A.B./M.A. program.


Peter A. Beckmann, Marion Reilly Professor (on leave semester I)
Mark Matlin, Senior Lecturer and Laboratory Coordinator
Elizabeth F. McCormack, Professor
David Nice, Visiting Assistant Professor
Michael W. Noel, Associate Professor and Chair
Michael B. Schulz, Assistant Professor

The courses in Physics emphasize the concepts and techniques that have led to our present way of modeling the world around us. They are designed to both relate the individual parts of physics to the whole and to treat the various subjects in depth. Opportunities exist for interdisciplinary work and for participation by qualified majors in research with members of the faculty and their graduate students.

Required Introductory Courses for the Major and Minor

The introductory courses required for the physics major and minor are PHYS 121 (called PHYS 103 in 2007-08) and PHYS 122 (or PHYS 101 and 102) and MATH 101 and MATH 102. Advanced placement and credit is given for a score of 4 or 5 on the AP tests and for a score of 5 or above on the IB examination. Alternatively, students may take the departmental advanced placement examination either during the summer before entering Bryn Mawr or just prior to, or during, the first week of classes. Entering students are strongly urged to take this examination in physics and the corresponding placement examination in mathematics if they have had reasonably strong courses in high school. Students can place out of either the first or the first two semesters of physics and mathematics.

It is best for a student considering a physics major to complete the introductory requirements in the first year. However, the major sequence is designed such that a student who completes the introductory sequence by the end of the sophomore year can major in physics.

Major Requirements

Beyond the two introductory physics courses and the two introductory mathematics courses, nine additional courses are required for the major. (Haverford courses may be substituted for Bryn Mawr courses where appropriate.) Six of the nine courses must be PHYS 201, 214, 306, 331 and MATH 201, 203. The remaining three courses must be chosen from among the other 300-level physics courses, one of which may be substituted with any one course from among ASTR 305, 320 and 322, or any one course from among MATH 303, 312 and 322.

The department has been very successful in preparing students for graduate school in physics, physical chemistry, materials science, engineering, and related fields. To be well prepared for graduate school, students should take PHYS 302, 303, 308, and 309 (in addition to PHYS 306 and 331 which are required for the major). These students should also take any additional physics, mathematics and chemistry courses that reflect their interests, and should engage in research with a member of the faculty by taking PHYS 403. (Note that PHYS 403 is usually two semesters and does not count toward one of the 13 courses required for the major.) Seniors can take graduate courses, usually Physics 501: Quantum Mechanics or Physics 503: Electromagnetism, to get a head start on graduate school.

Typical plans for a basic four-year major in physics are listed below.

Four-Year Plan meeting the minimum requirements for the major:

1st Year
PHYS 121 (called PHYS 103 in 2007-08), 122
MATH 101, 102

2nd Year
PHYS 201, 214
MATH 201, 203

3rd Year
PHYS 306, 331 and one other 300-level physics course

4th Year
Two 300-level physics courses

Four-Year Plan providing adequate preparation for graduate school:

1st Year
PHYS 121 (called PHYS 103 in 2007-08), 122
MATH 101, 102

2nd Year
PHYS 121, 122
MATH 201, 203

3rd Year
PHYS 306, 331 and either 303, 309 or 308, 302

4th Year
PHYS 308, 302 or 303, 309
PHYS 403 (both semesters)

The physics program at Bryn Mawr allows for a student to major in physics even if the introductory courses are not completed until the end of the sophomore year, as long as calculus (MATH 101 and 102) is taken in the first year. It is also possible, although difficult, for the student majoring in three years to be adequately prepared for graduate school. To do this, the outline below should be supplemented with (at least) PHYS 403 for both semesters in the 4th year.

Three-Year Plan meeting the minimum requirements for the major:

1st Year
MATH 101, 102

2nd Year
PHYS 103, 122
MATH 201, 203

3rd Year
PHYS 201, 214, 306, 331

4th Year
Three 300-level physics courses


The A.B. degree may be awarded with honors in physics. The award is based on the quality of original research done by the student and a minimum grade point average. The research must be described in a senior thesis presented to the department. A grade point average of 3.4 or higher in 200- and 300-level physics courses (excluding PHYS 380 and 390) and an overall grade point average of at least 3.0, both calculated at the end of the senior year, must be achieved.

Minor Requirements

The requirements for the minor, beyond the introductory sequence, are PHYS 201, 214, 306, 331; MATH 201, 203; and one additional 300-level physics course. The ASTR and MATH courses described under Major Requirements may not be substituted for the one additional 300-level physics course.

Minor in Computational Methods

Students can major in physics and receive a minor in computational methods. Students would need to complete the requirements for the physics major where one of the additional 300-level courses must be PHYS 322. Further, students would have to complete CMSC 110, 206 and 231 and one of PHYS 304 (at Haverford), CMSC 212, 225 (at Haverford), 245, 246, 330 or 340 (at Haverford).

Minor in Educational Studies or Secondary-School Teacher Certification

Students majoring in physics can pursue a minor in educational studies or state certification to teach at the secondary-school level. Students seeking the minor need to complete six education courses including a two-semester senior seminar, which requires five to eight hours per week of fieldwork. To earn secondary-school certification (grades 7-12) in physics, students must: complete the physics major plus two semesters of chemistry and one semester as a teaching assistant in a laboratory for introductory or intermediate physics courses; complete six education courses; and student-teach full-time (for two course credits) second semester of their senior year.

A.B./M.A. Program

To earn an M.A. degree in physics in the College's A.B./M.A. program, a student must complete the requirements for an undergraduate physics major and also must complete six units of graduate level work in physics. Of these six units, as many as two units may be undergraduate courses at the 300 level taken for graduate credit (these same two courses may be used to fulfill the major requirements for the A.B. degree), at least two units must be graduate seminars at the 500 level, and two units must be graduate research at the 700 level leading to the submission and oral defense of an acceptable M.A. thesis. Students must also demonstrate skill in computing or in a foreign language.

Courses at Haverford College

Many upper-level physics courses are taught at Haverford and Bryn Mawr in alternate years as indicated in the listings of the specific courses below. These courses (numbered 302, 303, 308, 309, and 322) may be taken at either institution to satisfy major requirements. In addition 100- and 200-level courses can be used to replace 100- and 200-level courses at Bryn Mawr but these courses are not identical and careful planning is required.

PHYS B101, B102 Introductory Physics

Two introductory courses on the study of the physical universe intended primarily for students on the pre-health professions track. Emphasis is on developing an understanding of how we study the universe, the ideas that have arisen from that study, and on problem solving. Topics are taken from among Newtonian kinematics and dynamics, relativity, gravitation, fluid mechanics, waves and sound, electricity and magnetism, electrical circuits, light and optics, quantum mechanics, atomic and nuclear physics, and particle physics and cosmology. Calculus is introduced and used as needed. An effective and usable understanding of algebra and trigonometry is assumed. Freshmen who will take or place out of MATH 101 should take PHYS 121 (called PHYS 103 in 2007-08). Lecture three hours, laboratory three hours every second week. (staff, Division IIL and Quantitative Skills)

PHYS B103 An Introduction to Physics (2007-08)

See PHYS B121 for course description.

PHYS B107 Conceptual Physics

This course addresses how human beings model physical systems far from the everyday human realm. The course addresses how the human senses work, the role of biological evolution, and how we develop models for the physical universe. We try to understand that the "world out there," though an absolute in some abstract sense, must be interpreted and "modeled" by the human brain. Once this is understood, a huge pedagogical impediment to engaging models in electromagnetism, quantum mechanics, special relativity, general relativity, cosmology, particle physics, and nuclear physics is overcome. There is no mathematics at all. Readings include Abbott's Flatland, Wells' The Country of the Blind, Borges' Library of Babel, Kafka's Metamorphosis, other short stories involved with modeling the world, and select short scientific articles. Students keep a journal where they comment on web sites related to the topics covered in class. Lecture three hours, laboratory three hours every second week. Note: this course does not satisfy the Quantitative Skills requirement. Also see PHYS 150 which is PHYS 107 without the laboratory. (Beckmann, Division IIL) Not offered in 2007-08.

PHYS B109 How Things Work

This course gives students the opportunity to explore the physical principles that govern the objects and activities familiar in their everyday lives. For example, objects such a roller coasters, rockets, light bulbs and Xerographic copiers will be used to explore motion, fluids, heat and electricity. Lecture three hours, laboratory three hours every second week. Note: this course does not satisfy the Quantitative Skills requirement. Also see PHYS 160 which is PHYS 109 without the laboratory. (Noel, Division IIL)

PHYS B121 An Introduction to Physics

Called PHYS 103 for 2007-08. This course develops physical intuition and problem-solving skills by exploring ideas and discoveries of twentieth and twenty-first century physics. Fundamental physical concepts such as energy, momentum, waves, and electromagnetic forces are introduced and used to gain insight into topics such as the quantum mechanical behavior of atoms, the wave-particle duality of matter, special relativity, and cosmology. This course is the first semester of the introductory physics sequence, but it also serves as a one-semester stand-alone course. It is suitable for any student with a strong interest in physical science. Lecture three hours, laboratory three hours every second week. Corequisite: Math 101. (staff, Division IIL and Quantitative Skills)

PHYS B122 Classical and Relativistic Mechanics

The lecture material covers Newtonian Mechanics of single particles, systems of particles, rigid bodies, and continuous media with applications, one-dimensional systems including forced and nonlinear oscillators, scattering and orbit problems, and the special theory of relativity applied to both kinematics and dynamics. Lecture three hours, laboratory three hours every second week. Prerequisites: Physics 103 and Math 101. Corequisite: Math 102. (staff, Division IIL and Quantitative Skills)

PHYS B150 Conceptual Physics

PHYS 107 but without the laboratory. (Beckmann, Division II) Not offered 2007-08.

PHYS B160 How Things Work

PHYS 109 but without the laboratory. (Noel, Division II)

PHYS B201 Electromagnetism and Physical Optics

The lecture material covers electrostatics, electric currents, magnetic fields, electromagnetic induction, Maxwell's equations, electromagnetic waves, and elements of physical optics, including principles of diffraction, interference and coherence. Scalar and vector fields and vector calculus are introduced and developed as needed. The laboratory involves passive and active circuits and analog and digital electronics. Lecture three hours, laboratory three hours a week. Prerequisite: PHYS 102 or 122. Corequisite: MATH 201. (staff, Division IIL and Quantitative Skills)

PHYS B214 An Introduction to Quantum Mechanics

An Introduction to the principles governing systems at the atomic scale or below. Topics include the experimental basis of quantum mechanics, wave-particle duality, Schrödinger's equation and its solutions, the time dependence of quantum states, angular momentum in the microscopic world, simple atoms, and atomic nuclei. Recent developments, such as paradoxes calling attention to the counter-intuitive aspects of quantum physics, will be discussed. The laboratory involves quantum mechanics, solid state physics, and optics experiments. Lecture three hours, laboratory three hours a week. Prerequisite: PHYS 201, MATH 201. Corequisite: MATH 203. (staff, Division IIL and Quantitative Skills)

PHYS B302 Advanced Quantum Mechanics and Applications

This course presents nonrelativistic quantum mechanics, including Schrödinger's equation, the eigenvalue problem, the measurement process, the hydrogen atom, the harmonic oscillator, angular momentum, spin, the periodic table, perturbation theory, and the relationship between quantum and Newtonian mechanics. Lecture three hours a week and additional recitation sessions as needed. Prerequisites: PHYS 214 and PHYS 306. (staff) Alternates between Bryn Mawr and Haverford; 2007-08 at Bryn Mawr.

PHYS B303 Statistical Mechanics and Thermodynamics

This course presents the statistical description of the macroscopic states of classical and quantum systems, including conditions for equilibrium, microcanonical, canonical and grand canonical ensembles, and Bose-Einstein, Fermi-Dirac and Maxwell Boltzmann statistics. Examples and applications are drawn from thermodynamics, solid state physics, low temperature physics, atomic and molecular physics and electromagnetic waves. Lecture three hours a week and additional recitation sessions as needed. Prerequisite: PHYS 214. Corequisite: PHYS 306. (staff) Alternates between Bryn Mawr and Haverford; 2007-08 at Haverford.

PHYS B306 Mathematical Methods in the Physical Sciences

This course presents topics in applied mathematics and computational methods useful to students, including physicists, engineers, physical chemists, geologists and computer scientists studying the natural sciences. Topics are taken from coordinate transformations and tensors, vector spaces, Fourier series, integral transforms, advanced ordinary and partial differential equations, special functions, boundary-value problems, functions of complex variables, an introduction to group theory and numerical methods for matrix diagonalization, solving systems of ordinary differential equations, solving partial differential equations, and Monte Carlo simulations. Lecture three hours a week and additional recitation sessions as needed. Prerequisites: MATH 201 and 203. (staff)

PHYS B308 Advanced Classical Mechanics

This course presents kinematics and dynamics of particles and macroscopic systems using Newtonian, Lagrangian and Hamiltonian mechanics. Topics include oscillations, normal mode analysis, inverse square laws, nonlinear dynamics, rotating rigid bodies and motion in noninertial reference frames. Lecture three hours a week and additional recitation sessions as needed. Prerequisite: PHYS 214. Corequisite: PHYS 306. (staff) Alternates between Bryn Mawr and Haverford; 2007-08 at Bryn Mawr.

PHYS B309 Advanced Electromagnetic Theory

This course presents electrostatics and magnetostatics, dielectrics, magnetic materials, electrodynamics, Maxwell's equations, electromagnetic waves and relativity. Examples and applications are taken from superconductivity, plasma physics and radiation theory. Lecture three hours a week and additional recitation sessions as needed. Prerequisites: PHYS 214 and 306. (staff) Alternates between Bryn Mawr and Haverford; 2007-08 at Haverford.

PHYS B322 Solid State Physics

This course presents the physics of solids. Topics include crystal structure and diffraction, the reciprocal lattice and Brillouin zones, crystal binding, lattice vibrations and normal modes, phonon dispersion, Einstein and Debye models for the specific heat, the free electron model, the Fermi surface, electrons in periodic structures, the Bloch theorem, band structure, semiclassical electron dynamics, semiconductors, and superconductivity. Lecture three hours a week and additional recitation sessions as needed. Prerequisites: PHYS 303 and 306. (staff) Alternates between Bryn Mawr and Haverford; 2007-08 at Haverford.

PHYS B325 Advanced Theoretical Physics

This course presents one or more of several subjects, depending on instructor availability and student interest. The possible subjects are (1) special relativity, general relativity, and gravitation, (2) the standard model of the elementary particles and forces, (3) particle astrophysics and cosmology, (4) relativistic quantum mechanics, (5) grand unified theories, (6) string theory, loop quantum gravity, and causal set theory. Lecture three hours a week and additional recitation sessions as needed. Prerequisites: PHYS 306 and 308. Corequisite: PHYS 302. (staff)

PHYS B331 Advanced Experimental Physics

This laboratory course consists of set-piece experiments as well as directed experimental projects to study a variety of phenomena in atomic, molecular, optical, nuclear and solid state physics. The experiments and projects serve as an introduction to contemporary instrumentation and the experimental techniques used in physics research laboratories in industry and in universities. Students write papers in a format appropriate for research publications and make a presentation to the department. Laboratory eight hours a week. Prerequisite: PHYS 201. Corequisite: PHYS 214. (staff)

PHYS B380 Assistant Teaching in Physics

Students work with a faculty member as they serve as assistant teachers in a college course in physics. Students will participate in a directed study of the literature on teaching and learning pedagogy, participate in constructing and designing a course, and engage in teaching components of the course. Prerequisite: two semesters of physics. (staff)

PHYS B390 Independent Study

At the discretion of the department, juniors or seniors may supplement their work in physics with the study of topics not covered in regular course offerings. (staff)

PHYS B403 Supervised Research

At the discretion of the department, juniors and seniors may supplement their work in physics with research in one of the faculty research groups. Students provide a written paper and give an oral presentation at the end of the semester or year. Students are encouraged to contact individual faculty members and the departmental Web pages for further information. (Beckmann, McCormack, Noel, Nice, Schulz)


Bryn Mawr College · 101 North Merion Ave · Bryn Mawr · PA · 19010-2899 · Tel 610-526-5000