13.39 How could you use IR spectroscopy to help you distinguish between the two compounds shown in Problem 13.38?

13.40 The compound whose 1H NMR spectrum is shown here has the molecular formula $C_8H_6Br_2$. Propose a plausible structure.

```
\begin{center}
\includegraphics[width=0.5\textwidth]{image1.png}
\end{center}
```

13.41 Propose structures for compounds that fit the following 1H NMR data:

(a) $C_6H_{10}O$

- 6 H doublet at 0.95 δ, $J = 7$ Hz
- 3 H singlet at 2.10 δ
- 1 H multiplet at 2.43 δ

(b) C_9H_8Br

- 3 H singlet at 2.32 δ
- 1 H broad singlet at 5.35 δ
- 1 H broad singlet at 5.54 δ

13.42 The compound whose 1H NMR spectrum is shown has the molecular formula $C_4H_7O_2Cl$ and shows an infrared absorption peak at 1740 cm$^{-1}$. Propose a plausible structure.

```
\begin{center}
\includegraphics[width=0.5\textwidth]{image2.png}
\end{center}
```

13.43 Propose structures for compounds that fit the following 1H NMR data:

(a) $C_6H_6Cl_2$

- 3 H singlet at 2.18 δ
- 2 H doublet at 4.16 δ, $J = 7$ Hz
- 1 H triplet at 5.71 δ, $J = 7$ Hz

(b) $C_{12}H_{14}$

- 9 H singlet at 1.30 δ
- 5 H singlet at 7.30 δ
13.44 How might you use NMR (either 1H or 13C) to differentiate between the following two isomeric structures?

![Structures](image)

(You might want to build molecular models to help you examine the two structures more closely.)

13.45 Propose plausible structures for the two compounds whose 1H NMR spectra are shown.

(a) $\text{C}_4\text{H}_8\text{Br}$

(b) $\text{C}_4\text{H}_8\text{Cl}_2$

13.46 We saw earlier that long-range coupling between protons more than two carbon atoms apart is sometimes observed when π bonds intervene. One example of long-
The 1H and 13C NMR spectra of compound A, C$_6$H$_5$Br, are shown. Propose a possible structure for A, and assign peaks in the spectra to your structure.

13.49 Propose plausible structures for the three compounds whose 1H NMR spectra are shown.

(a) C$_4$H$_{10}$O$_2$
Figure 19.5. Nmr spectra for Problem 30, p. 653.

30, p. 653.