Section 4.1 – Using the First and Second Derivatives

Definitions. Let f be a function.

1. A critical point of f is a point p in the domain of f such that either $f'(p) = 0$ or $f'(p)$ is undefined.
2. We say that f has a local minimum at p if $f(p)$ is less than or equal to the values of f for points near p.
3. We say that f has a local maximum at p if $f(p)$ is greater than or equal to the values of f for points near p.
4. An inflection point of f is a point at which the function f changes concavity.

Example. Given to the right is the graph of a function f.

(a) Estimate the critical point(s) of f.

(b) Estimate the inflection point(s) of f.

(c) Does f have any local maximum or local minimum values? If so, list them, making it clear which are which.

First Derivative Test. Suppose that p is a critical point of a continuous function f.

1. If f' changes from negative to positive at p, then f has a ______________________ at $x = p$.
2. If f' changes from positive to negative at p, then f has a ______________________ at $x = p$.

Second Derivative Test.

1. If $f'(p) = 0$ and $f''(p) > 0$, then f has a ______________________ at $x = p$.
2. If $f'(p) = 0$ and $f''(p) < 0$, then f has a ______________________ at $x = p$.

Activities to accompany Calculus, Hughes-Hallett et al, Wiley, 2013
EXERCISES.

1. Let \(f(x) = x^{2/3}(4 - x)^{1/3} \).

 (a) Given that \(f'(x) = \frac{8 - 3x}{3x^{1/3}(4 - x)^{2/3}} \), find the intervals on which \(f \) is increasing/decreasing.
(b) Given that $f''(x) = \frac{-32}{9x^{4/3}(4-x)^{5/3}}$, find the intervals on which f is concave up/concave down.
(c) Find all local maxima, local minima, and inflection points of f.
2. Given to the right is the graph of the DERIVATIVE of a function. Use this graph to help you answer the following questions about the ORIGINAL FUNCTION f.

(a) What are the critical points of f?

(b) Where is f increasing? decreasing?

(c) Does f have any local maxima? If so, where?

(d) Does f have any local minima? If so, where

(e) Where is f concave up? concave down?
3. Given to the right is the graph of the SECOND DERIVATIVE of a function. Use this graph to help you answer the following questions about the ORIGINAL FUNCTION f.

 (a) Where is f concave up? concave down?

(b) Does f have any inflection points? If so, where?