CONNECTED SETS, INTERVALS AND CONTINUOUS FUNCTIONS

Theorem: An interval is connected.

Proof: (from Morgan, Ch. 12, p. 49) Suppose that an interval I can be separated by two disjoint open sets into two non-empty pieces \(I \cap U_1 \) and \(I \cap U_2 \). Take a point \(a_1 \in I \cap U_1 \) and a point \(a_2 \in I \cap U_2 \). We may suppose that \(a_1 < a_2 \).

Since \(I \) is an interval, the entire interval \([a_1, a_2] \) is contained in \(I \) and hence is covered by the open sets \(U_1 \) and \(U_2 \). So each point in the interval \([a_1, a_2] \) is an element of either \(U_1 \) or \(U_2 \).

Consider the set \(S_1 = [a_1, a_2] \setminus U_2 = [a_1, a_2] \cap U_2^c \). Let \(b_1 = \) maximum element of \(S_1 \), which exists since \(S_1 \) is compact and non-empty (since \(a_1 \in S_1 \)). Then \(b_1 \in U_1 \) (since it is not an element of \(U_2 \)) and thus \(b_1 < a_2 \).

Now examine the set \(S_2 = [b_1, a_2] \setminus U_1 = [b_1, a_2] \cap U_1^c \). Let \(b_2 = \) minimum element of \(S_2 \). Then \(b_2 \in U_2 \). \(b_2 \geq b_1 \). Since \(b_1 \in U_1 \), \(b_1 \) can not be this minimal element so \(b_2 > b_1 \).

Choose \(b_3 \) so that \(b_1 < b_3 < b_2 \). Since \(b_2 \) is the smallest number larger than \(b_1 \) that is not in \(U_1 \), the number \(b_3 \) must be in \(U_1 \).

Then \(b_3 \notin U_2 \) which contradicts the choice of \(b_1 \).

Theorem: (from Morgan, Ch. 12, p. 50) The continuous image of a connected set is connected: i.e. if \(S \) is connected then \(f(S) \) is connected.

Proof Suppose \(f(S) \) is disconnected. Then there exist disjoint open sets \(U_1 \) and \(U_2 \) that disconnect \(f(S) \). Then the sets \(f^{-1}(U_1) \) and \(f^{-1}(U_2) \) are open, since \(f \) is continuous and we claim that these open sets disconnect \(S \).

One must check that

i. \(f^{-1}(U_1) \) and \(f^{-1}(U_2) \) are disjoint
ii. \(S \cap f^{-1}(U_1) \) and \(S \cap f^{-1}(U_2) \) are non-empty
iii. \(S = (S \cap f^{-1}(U_1)) \cup (S \cap f^{-1}(U_2)) \)

These conditions can all be checked by taking \(s \in S \), applying \(f(s) \) and using the properties related to \(U_1 \) and \(U_2 \).

As an example, we prove (i.) Suppose \(x \in f^{-1}(U_1) \cap f^{-1}(U_2) \). Then \(f(x) \in U_1 \) and \(f(x) \in U_2 \). So \(f(x) \in U_1 \cap U_2 \) which contradicts that \(U_1 \) and \(U_2 \) are disjoint.