Concavity Test: if $f''(x) > 0$ then graph of f is concave up.
if $f''(x) < 0$ then graph of f is concave down.

Example:

Determine concavity:

1) $f'(x) = -x^4 + 2x^2 + 2$

To find $f''(x)$:

$f''(x) = -4x^3 + 4x = 4x(x^2 - 1) = 0$

- $x = 0$
- $x^2 - 1 = 0$

Critical Points:

- $x = -1$
- $x = 1$
- $x = 0$

Sign Chart:

<table>
<thead>
<tr>
<th>Interval</th>
<th>$f''(x)$</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -1$</td>
<td>-</td>
<td>concave down</td>
</tr>
<tr>
<td>$-1 < x < 1$</td>
<td>+</td>
<td>local min</td>
</tr>
<tr>
<td>$x > 1$</td>
<td>+</td>
<td>concave up</td>
</tr>
</tbody>
</table>

Derivative Test:

- Local min at $x = 0$

2) $f''(x) = -12x^2 + 4 = 4(-3x^2 + 1) = 0$

- $-3x^2 + 1 = 0$
- $3x^2 = 1$
- $x^2 = \frac{1}{3}$
- $x = \pm \sqrt{\frac{1}{3}}$

Critical Points:

- $x = -\sqrt{\frac{1}{3}}$
- $x = 0$
- $x = \sqrt{\frac{1}{3}}$

Sign Chart:

<table>
<thead>
<tr>
<th>Interval</th>
<th>$f''(x)$</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x < -\sqrt{\frac{1}{3}}$</td>
<td>-</td>
<td>concave down</td>
</tr>
<tr>
<td>$-\sqrt{\frac{1}{3}} < x < 0$</td>
<td>+</td>
<td>local min</td>
</tr>
<tr>
<td>$x > 0$</td>
<td>+</td>
<td>concave up</td>
</tr>
</tbody>
</table>

Derivative Test:

- Local min at $x = 0$

Inference Points:

<table>
<thead>
<tr>
<th>Point</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\sqrt{\frac{1}{3}}$</td>
<td>$f(-\sqrt{\frac{1}{3}})$</td>
</tr>
<tr>
<td>0</td>
<td>$f(0)$</td>
</tr>
<tr>
<td>$\sqrt{\frac{1}{3}}$</td>
<td>$f(\sqrt{\frac{1}{3}})$</td>
</tr>
</tbody>
</table>
THE FIRST D

(a) If \(f'(x) \) changes from positive to negative at \(c \), then \(f \) has a local maximum at \(c \).
(b) If \(f'(x) \) changes from negative to positive at \(c \), then \(f \) has a local minimum at \(c \).
(c) If \(f'(x) \) does not change sign at \(c \) (for example, if \(f'(x) \) is positive on both sides of \(c \) or negative on both sides), then \(f \) has no local maximum or minimum at \(c \).

The First Derivative Test is a consequence of the I/D Test. In part (a), for instance, since the sign of \(f'(x) \) changes from positive to negative at \(c \), \(f \) is increasing to the left of \(c \) and decreasing to the right of \(c \). It follows that \(f \) has a local maximum at \(c \).

It is easy to remember the First Derivative Test by visualizing diagrams such as those in Figure 3.

EXAMPLE 2 Find the local minimum and maximum values of the function \(f \) in Example 1.

SOLUTION From the chart in the solution to Example 1 we see that \(f'(x) \) changes from negative to positive at \(-1 \), so \(f(-1) = 0 \) is a local minimum value by the First Derivative Test. Similarly, \(f'(x) \) changes from negative to positive at \(2 \), so \(f(2) = -27 \) is also a local minimum value. As previously noted, \(f(0) = 5 \) is a local maximum value because \(f'(x) \) changes from positive to negative at \(0 \).

EXAMPLE 3 Find the local maximum and minimum values of the function

\[
g(x) = x + 2 \sin x \quad 0 \leq x \leq 2\pi
\]

SOLUTION To find the critical numbers of \(g \), we differentiate:

\[
g'(x) = 1 + 2 \cos x
\]

So \(g'(x) = 0 \) when \(\cos x = -\frac{1}{2} \). The solutions of this equation are \(2\pi/3 \) and \(4\pi/3 \). Because \(g \) is differentiable everywhere, the only critical numbers are \(2\pi/3 \) and \(4\pi/3 \) and so we analyze \(g \) in the following table.

<table>
<thead>
<tr>
<th>Interval</th>
<th>(g'(x) = 1 + 2 \cos x)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < x < 2\pi/3)</td>
<td>(+)</td>
<td>increasing on ((0, 2\pi/3))</td>
</tr>
<tr>
<td>(2\pi/3 < x < 4\pi/3)</td>
<td>(-)</td>
<td>decreasing on ((2\pi/3, 4\pi/3))</td>
</tr>
<tr>
<td>(4\pi/3 < x < 2\pi)</td>
<td>(+)</td>
<td>increasing on ((4\pi/3, 2\pi))</td>
</tr>
</tbody>
</table>
\[\begin{align*}
\text{In}[1]:= & \quad f[x_] := -x^4 + 2x^2 + 2 \\
\text{In}[2]:= & \quad f[-1] \\
\text{Out}[2]= & \quad 3 \\
\text{In}[3]:= & \quad f[-1/\sqrt{3}] \\
\text{Out}[3]= & \quad \frac{23}{9} \\
\text{In}[4]:= & \quad f[+1/\sqrt{3}] \\
\text{Out}[4]= & \quad \frac{23}{9} \\
\text{In}[6]:= & \quad \text{N}[-1/\sqrt{3}] \\
\text{Out}[6]= & \quad -0.57735 \\
\text{In}[9]:= & \quad \text{Solve}\[f[x] = 0, \: x\] \\
\text{Out}[9]= & \quad \{\{x \to -i \sqrt{1 - 1 + \sqrt{3}}\}, \{x \to i \sqrt{1 + 1 + \sqrt{3}}\}, \{x \to -\sqrt{1 + 1 + \sqrt{3}}\}, \{x \to \sqrt{1 + 1 + \sqrt{3}}\}\} \\
\text{In}[10]:= & \quad \text{NSolve}\[f[x] = 0, \: x\] \\
\text{Out}[10]= & \quad \{\{x \to -1.65289\}, \{x \to 0. - 0.8556 \text{ i}\}, \{x \to 0. + 0.8556 \text{ i}\}, \{x \to 1.65289\}\}\end{align*}\]