Project Presentations:

Here is our estimated schedule for the next couple of weeks:

M 3/16 and F 3/20: Finish Ch. 21 Power Series

M 3/16, W 3/18: Ch 27 Metric Spaces. Take home portion of exam to be given out on Wed/Thru/Friday? Due following Monday?

F 3/20: Ch 28 Analysis on Metric Spaces

M 3/23: Ch 29: Compactness in Metric Spaces

W 3/25: Ch 30: Ascoli Theorem

F 3/27: Ch 22: Introduction to Fourier Series: Laura

M 3/30: Banach Fixed Point Theorem (Caitlin, Tessa, Taku) and Intro to Nowhere Differentiable Functions (Lise, Qandeel, Jenny). 20 minutes each group.

W 4/1: Intro to Space Filling Curves (Audra, Sandra, Rebecca) and Intro to Newton's Method (Grace, Alicia, Emilie). 20 minutes each group.

After this, we will cover topics in dynamical systems as a class. In late April, all groups will give another, more in-depth presentation on their projects.

Due Wed March 18th.

II. Write up, in more detail than in the book, the proof of the root test in the case that \(\rho < 1 \). p. 91 Ch. 20.

Ch. 21: # 1, 2, 3, 7

III. a. In class, we discussed the power series for \(\frac{1}{x} \) given by equation (2), p. 96. Check that the terms in this power series agree with the terms we would have gotten from the Taylor Series based at \(x_0 = 1 \). i.e. \(a_k = f^{(k)}(1)/k! \) (This is problem #6).

b. By integrating (2), find a power series for \(\ln x \). What is the radius of convergence of this power series? Justify. What happens to the series at the endpoints of the interval of convergence?

c. By differentiating (2), find a power series for \(\frac{1}{x^2} \). What is the radius of convergence of this series? Justify. What happens at the endpoints?