The goal of the project is for you to put your differential equations knowledge to use investigating a problem of interest to you.

The project will have two components: the research, in which you learn about your topic, and the write up, in which you describe what you have learned.

In doing the research (i.e. in figuring things out), use the techniques we have practiced during the term:
- figure out what variables and parameters you want to use and what they represent. Write down an exact statement of what each variable and parameter is representing.
- figure out what the units are for the variables and parameters.
- make up a simple example with numbers and units to help you understand what the variables and parameters mean.
- write out the equations you need for your model. Explain to yourself (and your partner) what the terms in the equations are representing. Check that the units of all the terms are make sense and are consistent.
- draw diagrams and graphs to clarify and help you understand the problems.

Write up:

Target audience: Imagine that the person reading your paper is another student in our differential equations course. You want this person to be able to understand what you are describing. So your paper should include:

1. **Introduction** (Setting the stage) in which you describe in general terms:
 - what your project is about
 - why the reader should care about this topic

2. **Main part of paper**: Describe what you have learned/discovered/figured out about your topic in such a way that the reader (your classmate) can understand your reasoning. Your mathematics should of course be correct. Components that can help the reader understand include:
 - stating clearly what variables and parameters you use and what they represent.
 - stating clearly what the units are for the variables and parameters.
- giving a simple example with numbers and units to illustrate what the variable
and parameters mean.
- drawing diagrams and graphs that clarify and help explain your problem. Be
sure to include a description of what the diagram/graph is showing so the reader in not
left wondering what is the point of the diagram/graph.
- using tables to summarize your results.
- working out problems/exercises. Be sure to state clearly what the problem is
that you are working on and what the answer is that you get. Write out your work in such
a way that the reader can understand the reasoning behind your solution.
- using the language/terms we have learned in the course: example – “to solve this
non-homogeneous linear equation we ….” or “we find the linear approximation at the
equilibrium point”.
- plugging numerical values into the parameters and working out a problem
using numbers rather than the more abstract parameters. State clearly the value of the
parameters you are using.
- breaking your report up into sections

3. **Future Directions Section:** Include a section in which you mention some problems,
questions, issues that this project has lead you to wonder about that you (or another
researcher) might want to examine in the future. This can be short.

4. **“What to do when you do not know what to do” section.** This has been a theme of
our course. In your write up, include a section in which you discuss what you have
learned about this issue in doing the project.

Length: your paper should be 10 – 15 pages long and should be type written. For the
math equations, you can either leave blank lines and write them in by hand or your can
use a computer system (such as Microsoft Equation: go to INSERT, OBJECT) to type the
equations.

The project modules can serve as a guide to your work. You get to decide how closely
you follow the module.

Teamwork Report. Each person on the team should write a short (one paragraph) report
describing what was the role of each member of the team, and how well (in your
opinion) the different team members contributed to the project. As a measure of your
opinion of people’s participation, state how you would distribute 20 reward points among
the team members.

Resources:

You should consider using the computer programs from our CD, the TrueBasic programs
for numerical integration and Mathematica. With Mathematica, you can graph functions
and solve equations. Also Mathematica can numerically solve differential equations (even for systems of more than 2 equations). See the handout for an example of this.