Wk 3 Homework: due Wed Feb 13.

1. Prove that if $P_n = (x_n, y_n)$ converges to $P = (x, y) \in (R^2, d_E)$ then $x_n \to x$ and $y_n \to y$.

2. a. Show that the taxi cab metric d_{TC} (which is defined as d_1 in Example 11.4.2, Bartle) is a metric.

b. Draw the unit ball in the taxi cab metric. This is problem #8a, p. 333.

3. Prove: If a set S is closed then every limit point of S is contained in S. Before starting this problem, list the different strategies you might use to help figure out what to do when you do not know what to do.

4. Consider the half-infinite interval $\{x \in R : x \geq 0\}$. This set together with the absolute value distance defines a metric space. Is this metric space complete?

5. a. Give an example of an open set G in R such that

a. G is bounded.

b. G is unbounded.

c. G is connected (i.e. one piece).

d. G is disconnected (has two or more pieces).

b. Repeat (a) but now for G a closed set.

6. Consider the space $C[0, 1]$. Let $f(x) = \frac{2}{3}x + 1$ and $g(x) = x^2$ be elements of the function space. Calculate $d_{\infty}(f, g)$ and $d_1(f, g)$. (Hint: How do you find the maximum value of a function?).

7. (Sect 8.1) For the sequences of functions $f_n(x) = x^2/n$, $x \in [0, 1]$. (a) make an animation of the sequence (b) calculate the pointwise limit of the sequence of functions.

From Bartle: p. 333 #6, 9; p. 232 #1, 3.