Hw 9: Power Series
Sect 9.4:
p. 272:
5 (Hint: apply ratio test).
6ace

17: Do the following steps for this problem.
a. Find a power series that equals \(f(x) = \frac{1}{1+x^2} \). Determine the radius of convergence \(R \) for this power series.
b. Use Theorem 8.2.4 to justify the interchange of integral and limit:

\[
\int f(x) \, dx = \int \left(\lim_{n \to \infty} s_n(x) \right) \, dx = \lim_{n \to \infty} \int s_n(x) \, dx
\]

and thereby get a power series expression for arctan \(x \) that holds for \(|x| \leq r \) where \(r \) is any number less than \(R \) =radius of convergence found in part a.
c. Explain why this gives that for all \(x \) satisfying \(|x| < 1 \),

\[
\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1} x^{2n+1}
\]

Sect 8.2, p. 238

#1, 2,

10: Set \(f_n(x) = e^{-nx} \), for \(x \in [1, 2] \). Determine the pointwise limit \(f_n(x) \to f(x) \) for \(x \in [1, 2] \). Then prove that this convergence is uniform for \(x \in [1, 2] \). Finally use the integration theorem).