Ammonia (ctd.)

Better explanation for why $A \propto \frac{1}{\text{coupling strength}}$:

1. $|2\rangle$ is almost an energy eigenstate
2. $\hat{A}|2\rangle \approx E_0|2\rangle$
3. $-A = \langle 1|\hat{A}|2\rangle \approx E_0 \langle 1|2\rangle$

If we start the system in $|1\rangle$, which is an equal superposition of the energy eigenstates, then it oscillates to $|2\rangle$, back to $|1\rangle$, etc. with period $\frac{2\pi}{A}$.

The same thing happens for any double-well potential.

This is analogous to the behavior of a coupled oscillator:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>left bob oscillates</td>
<td>right bob still</td>
<td>left bob still</td>
<td>right bob oscillates</td>
</tr>
</tbody>
</table>

Energy-time uncertainty relation

Townsend shows $\Delta E \Delta t \geq \hbar/2$, where

$\Delta t \equiv \text{time for the state to change significantly}$.

But, can also interpret Δt as the time used to measure E, and ΔE as the measurement uncertainty \equiv can violate cons. of energy, so long as you're quick about it!

Time evolution of expectation values for energy eigenstates

$\langle A \rangle_t = \langle A \rangle_{t=0}$

For any observable $\hat{A} \equiv$ "nothing ever changes in an energy eigenstate."

Connecting (again) to the wavefunction

$|\Psi\rangle = \sum C_n |E_n\rangle$

$C_n = \langle E_n | \Psi \rangle$

$\hat{I} = \sum a_i \hat{X} a_i^\dagger$

any complete basis

$|\psi(x)\rangle = \int |x\rangle \langle x| \Psi \rangle dx$

$C_n = \int \langle E_n | x \rangle \langle x | \Psi \rangle dx = \int \Psi^*_n \psi(x) dx$
Two distinguishable spin-$\frac{1}{2}$ particles
(e.g. electron & proton)

Our basis for describing this system:

$|1\rangle \equiv |+z\rangle \otimes |+z\rangle$

state of state of
particle 1 particle 2

$|2\rangle \equiv |-z\rangle \otimes |-z\rangle$

$|3\rangle \equiv |+z\rangle \otimes |-z\rangle$

$|4\rangle \equiv |-z\rangle \otimes |+z\rangle$

⇒ an arbitrary state $|4\rangle$ would be written

$|4\rangle \rightarrow |1\rangle \langle 1| + |2\rangle \langle 2| + |3\rangle \langle 3| + |4\rangle \langle 4|$

The direct product

$|+z\rangle \otimes |-z\rangle$

two-particle state

$|+z\rangle$ one-particle state for

particle 1

$|-z\rangle$ one-particle state for

particle 2

to express as a matrix:

$|+z\rangle \otimes |-z\rangle$

$A \otimes B$

first write

this in matrix form

then multiply each
element by the matrix form
of this

\[\hat{S}_{12} = \hat{S}_{1} \otimes \hat{I} \rightarrow \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & 0 & 0 & -\frac{i}{2} \end{pmatrix} \]

example: $\hat{S}_{12} |1\rangle \rightarrow \begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \\ 0 \end{pmatrix} |1\rangle = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$

In general, if $\hat{C} = \hat{A} \otimes \hat{B}$, then you'll show on your next assignment that

$\hat{C} \rightarrow \begin{pmatrix} |1\rangle \langle 1| & |1\rangle \langle 2| & |1\rangle \langle 3| & \cdots \\ |2\rangle \langle 1| & |2\rangle \langle 2| & |2\rangle \langle 3| & \cdots \\ |3\rangle \langle 1| & |3\rangle \langle 2| & |3\rangle \langle 3| & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$

\[= \begin{pmatrix} |+z\rangle \langle +z| + |-z\rangle \langle +z| + |z\rangle \langle +z| & \cdots & \cdots \\ |+z\rangle \langle +z| + |-z\rangle \langle +z| + |z\rangle \langle +z| & \cdots & \cdots \\ \cdots & \cdots & \cdots & \ddots \end{pmatrix} \]