There are 71 questions and you should do this exam in two and a half hours. Do not use any books, calculators, or computers.

1. If \(x - 1 = 2 \), then \(x + 1 = \)
 (A) 1 (B) 2 (C) 3 (D) 4 (E) –2

2. A cylinder has a circular cross section of diameter 4 cm (centimeters) and length 5 cm. The volume is approximately
 (A) 600 cm\(^3\) (B) 60 cm\(^3\) (C) 6,000 cm\(^3\) (D) 0.6 cm\(^3\) (E) 6 cm\(^3\)

3. If \(x = 3 \), then \(x^2 + 3 = \)
 (A) 6 (B) 9 (C) 12 (D) 27 (E) 3

4. The area under this line between \(x = 1 \) and \(x = 5 \) is about
 (A) 15
 (B) 5
 (C) 55
 (D) 25
 (E) 155
5. \(\frac{(-2)(-6)}{-4} = \)

(A) -3 (B) -2 (C) 2 (D) 3 (E) -12

6. \((2xy^3)^3 = \)

(A) \(6x^3y^9\) (B) \(8x^4y^6\) (C) \(8x^4y^6\) (D) \(8x^3y^9\) (E) \(6x^3y^9\)

7. \((2x - 1)(4x + 1) = \)

(A) \(8x^2 - 2x - 1\) (B) \(8x^2 - 6x - 1\) (C) \(8x^2 - 1\) (D) \(6x\) (E) \(-6x\)

8. \(\frac{4 \times 10^{-15}}{8 \times 10^{-12}} = \)

(A) \(5 \times 10^{-4}\) (B) \(2 \times 10^{-4}\) (C) \(5 \times 10^{-28}\) (D) \(5 \times 10^4\) (E) \(2 \times 10^{-27}\)

9. \(A_{13}. \left(\frac{x^2}{y} \right) + \left(\frac{x}{y^2} \right) = \)

(A) \(\frac{x}{y}\) (B) \(\frac{y}{x}\) (C) \(xy\) (D) \(\frac{x^2y + x}{y^2}\) (E) \(\frac{x^2y^2 + xy^2}{x^2y^2}\)

10. \(x^2 - 100 = \)

(A) \((x + 10)^2\) (B) \((x - 10)^2\) (C) \((x + 10)(x - 10)\)

(D) \((x - 50)(x - 50)\) (E) \((x - 2)(x - 50)\)

11. \((5 \times 10^8)(6 \times 10^{-12}) = \)

(A) \(3 \times 10^{-3}\) (B) \(3 \times 10^{-19}\) (C) \(3 \times 10^{-4}\) (D) \(3 \times 10^4\) (E) \(2 \times 10^{-27}\)
12. \((2x + 3) - (x - 2) =\)

(A) \(x + 5\) (B) \(x + 1\) (C) 3 (D) 7 (E) \(3x + 5\)

13. If \(A = \sqrt{3}\) and \(B = 1\) in the following triangle, then \(C =\)

\[\triangle ABC\]

\(A = 30\) \(C = ?\) \(B = 90\) \(a = ?\)

(A) \(\frac{1}{\sqrt{3}}\) (B) \(\frac{1}{2}\) (C) 2 (D) \(\sqrt{2}\) (E) \(\sqrt{5}\)

14. If \(\frac{1}{3}\) of a number is 8, then what is \(\frac{1}{4}\) of the number?

(A) \(\frac{1}{12}\) (B) \(\frac{1}{6}\) (C) 6 (D) 12 (E) 24

15. If \(x = -2\) and \(y = 5\), then \(x^3y =\)

(A) \(-40\) (B) \(-30\) (C) 30 (D) 40 (E) 12

16. If there are about three feet in a meter, 25 meters is about

(A) 8 feet (B) 75 feet (C) 450 feet (D) 4.5 feet (E) 0.45 feet

17. \((x^2 - 3x + 2) - (3x^2 - 5x - 1) =\)

(A) \(4x^2 - 8x + 1\) (B) \(2x^2 + 2x + 3\) (C) \(-2x^2 + 2x + 3\)

(D) \(-2x^2 - 2x + 1\) (E) \(2x^2 + 2x + 3\)
18. \(\frac{2x}{3y} \cdot \frac{9y}{4x^2} = \)

(A) 6xy (B) \(\frac{3y}{2x} \) (C) \(\frac{8x^3}{9y^2} \) (D) \(\frac{3}{2x} \) (E) \(\frac{8x^3}{9y^2} \)

19. \(2x^2 + 5x - 3 = \)

(A) \((2x-3)(x+1) \) (B) \((2x-3)(x-1) \) (C) \((2x-1)(x+3) \) (D) \((2x+1)(x-3) \) (E) \((2x-1)(x-1) \)

20. \(\ln(ab) = \)

(A) \(10^{ab} \) (B) \(e^{ab} \) (C) \(e^{(a+b)} \) (D) \(\ln(a) + \ln(b) \) (E) \(a \ln(b) \)

21. \(|3-8| = \)

(A) -11 (B) -5 (C) 5 (D) 11 (E) 12

22. \(\frac{2}{x} + \frac{5}{y} = \)

(A) \(\frac{2y+5x}{xy} \) (B) \(\frac{2x+5y}{xy} \) (C) \(-\frac{7}{x+y} \) (D) \(\frac{7}{xy} \) (E) \(\frac{-7}{x+y} \)

23. The box pictured below has a square base and a closed top. Express its surface area in terms of \(x \) and \(h \).

\[\text{(A) } x^2 + 4xh \]
\[\text{(B) } 8x + 4h \]
\[\text{(C) } 4x + h \]
\[\text{(D) } hx^2 \]
\[\text{(E) } 2x^2 + 4xh \]
24. If \(x = -4 \) and \(y = -7 \), then \(x - y = \)

(A) \(-11\) (B) \(-3\) (C) \(3\) (D) \(11\) (E) \(28\)

25. If \(f(x) \) is a function whose graph is the parabola sketched below, then \(f(x) < 0 \) whenever

\[
\begin{array}{c}
\text{(A) } x < 0 \\
\text{(B) } x < 3 \\
\text{(C) } x > 1 \\
\text{(D) } x < -1 \text{ or } x > 3 \\
\text{(E) } -1 < x < 3 \\
\end{array}
\]

26. If money in a bank doubles every 5 years, then by what factor does it increase over a 20 year period?

(A) \(4\) (B) \(8\) (C) \(12\) (D) \(16\) (E) \(20\)

27. Definition: A function is even if \(f(-x) = f(x) \) for each \(x \) in the domain of \(f \). Which of the functions whose graphs are shown is even?
28. If \(7y - 4 = 16 + 3y \), then \(y = \)
(A) \(\frac{6}{5} \) \(\) (B) \(2 \) \(\) (C) \(3 \) \(\) (D) \(5 \) \(\) (E) \(-5 \)

29. \((10)(-1/5)(-2)(3) = \)
(A) \(-12 \) \(\) (B) \(-3 \) \(\) (C) \(10 \) \(\) (D) \(12 \) \(\) (E) \(-10 \)

30. The y-coordinate of the intersection of the graphs of \(x - 2y = 6 \) and \(x + y = -3 \) is
(A) \(-3 \) \(\) (B) \(-2 \) \(\) (C) \(-1 \) \(\) (D) \(1 \) \(\) (E) \(3 \)

31. \(8^{-1/3}9^{1/2} = \)
(A) \(6 \) \(\) (B) \(-6 \) \(\) (C) \(\frac{1}{6} \) \(\) (D) \(\frac{2}{3} \) \(\) (E) \(\frac{3}{2} \)

32. \(\sqrt[3]{-27} = \)
(A) \(-9 \) \(\) (B) \(-3 \) \(\) (C) \(3 \) \(\) (D) \(9 \) \(\) (E) \(54 \)

33. Which of the following best resembles the graph of \(y = \frac{1}{2}x^2 - 3x + 1 \)?
(A) \(\) (B) \(\) (C) \(\) (D) \(\) (E)

34. If \(\log_3(x + 1) = 2 \), then \(x = \)
(A) \(5 \) \(\) (B) \(6 \) \(\) (C) \(7 \) \(\) (D) \(8 \) \(\) (E) \(\frac{2}{\log_3} - 1 \)
35. \((-2x^2)(3x^2y)(-y) = \)

(A) \(-6x^2y\) \hspace{1cm} (B) \(-x^2\) \hspace{1cm} (C) \(6x^4y\) \hspace{1cm} (D) \(6x^4y^2\) \hspace{1cm} (E) \(-x^2\)

36. Which of the following curves best resembles the graph of \(f(x) = 3^x\)?

(A) \hspace{1cm} (B) \hspace{1cm} (C) \hspace{1cm} (D) \hspace{1cm} (E)

37. If \(\frac{(2x+1)(x-1)}{(x+1)} = 0\), then \(x = \)

(A) \(-1\) or 1 \hspace{1cm} (B) \(-\frac{1}{2}\) or 1 \hspace{1cm} (C) \(-\frac{1}{2}, 1, \) or \(-1\) \hspace{1cm} (D) \(\frac{1}{2}\) or \(-1\) \hspace{1cm} (E) \(\frac{1}{2}, 1, \) or \(-1\)

38. \(13a - 15b - a + 2b = \)

(A) \(13 - 13b\) \hspace{1cm} (B) \(12a - 13b\) \hspace{1cm} (C) \(14a - 17b\) \hspace{1cm} (D) \(12a^2 - 13b^2\) \hspace{1cm} (E) \(13a + 13b\)

39. The symbol "\(\cong\)" means "is approximately equal to." Given that \(3^7 \cong 2000\), then \(3^{14} \approx \)

(A) 4,000 \hspace{1cm} (B) 40,000 \hspace{1cm} (C) 400,000 \hspace{1cm} (D) 4,000,000 \hspace{1cm} (E) 2,000^8
40. In the given figure, the distance between points \(A \) and \(C \) is

(A) 8
(B) 10
(C) 12
(D) 14
(E) 16

41. If \(f(x) = \frac{2x + 6}{x + 2} \), then \(f(a + 2) = \)

(A) \(\frac{5}{2} \)
(B) \(\frac{2a + 8}{a + 4} \)
(C) \(\frac{2a + 10}{a + 4} \)
(D) \(\frac{2a + 6}{a + 2} \)
(E) \(\frac{2a + 6}{a + 4} \)

42. The graph of the equation \(y = -5x + 3 \) is

(A) a horizontal line
(B) a line rising to the right
(C) a vertical line
(D) a line falling to the right
(E) not a line

43. If \(ax + b = 3 \) and \(a \neq 0 \), then \(x = \)

(A) \(\frac{b + 3}{a} \)
(B) \(\frac{3 - b}{a} \)
(C) \(\frac{b - 3}{a} \)
(D) \(b - 3 \)
(E) \(3 - b \)

44. The quantity \(a + b \) is a factor of how many of the following:

\[a^2 - b^2 \quad a^2 + b^2 \quad a^3 - b^3 \quad a^3 + b^3 \]

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

45. \(3p > p + 12 \) is equivalent to

(A) \(p > 1 \)
(B) \(p > 3 \)
(C) \(p > 4 \)
(D) \(p > 6 \)
(E) \(p > 15 \)
46. In the triangle shown, $\tan(a) =$

\[
\begin{array}{c}
\text{(A) } A/B \\
\text{(B) } B/A \\
\text{(C) } B/C \\
\text{(D) } A/C \\
\text{(E) } C/A
\end{array}
\]

47. $A^{ab} =$

\[
\begin{array}{c}
\text{(A) } A^{a+b} \\
\text{(B) } bA^a \\
\text{(C) } \frac{A^a}{A^b} \\
\text{(D) } (A^a)^b \\
\text{(E) } A^aA^b
\end{array}
\]

48. The area of the rectangle pictured below is

\[
\begin{array}{c}
\text{(A) } 0.015 \\
\text{(B) } 0.15 \\
\text{(C) } 0.2 \\
\text{(D) } 0.35 \\
\text{(E) } 0.75
\end{array}
\]

49. Suppose the sides of a rectangle with length x and width y are each doubled. The area of the rectangle now is

\[
\begin{array}{c}
\text{(A) } xy \\
\text{(B) } 2xy \\
\text{(C) } 3xy \\
\text{(D) } 4xy \\
\text{(E) } x^2y^2
\end{array}
\]

50. 4^0 (4 raised to the zeroth power) =

\[
\begin{array}{c}
\text{(A) } 2 \\
\text{(B) } 0 \\
\text{(C) } 4 \\
\text{(D) } 1 \\
\text{(E) } 0.25
\end{array}
\]
51. \(4 - (-2 + 5) = \)

(A) 11 (B) 7 (C) 1 (D) –3 (E) –1

52. In the triangle shown, \(\sin(b) = \)

\[
\begin{array}{c}
\text{D} \\
\text{b} \\
4 \\
\text{c} \\
\text{d} \\
3
\end{array}
\]

(A) 1.2 (B) 1.33 (C) 0.75 (D) 0.8 (E) 0.6

53. \(|x - 2| \leq 1\) is equivalent to

(A) \(x \geq 3\) (B) \(x \leq 1\) (C) \(-3 \leq x \leq -1\) (D) \(1 \leq x \leq 3\) (E) \(-3 \leq x \leq 3\)

54. \(\frac{3/2}{2/3} = \)

(A) 0 (B) 4/9 (C) 9/4 (D) 1 (E) 6

55. The length of a certain rectangle is 3 meters more than twice its width. If the perimeter of the rectangle is 90 meters, then the width of the rectangle is

(A) 6 m (B) 12 m (C) 14 m (D) 16 m (E) 29 m

56. \(4(s + 2) = \)

(A) 4s + 8 (B) 4s + 6 (C) 4s + 2 (D) s + 8 (E) \(\frac{1}{4}(s + 2)\)

57. \(\frac{3}{4} - \frac{1}{7} = \)

(A) 17/28 (B) 25/28 (C) 1/14 (D) 2/47 (E) 3/14
58. If \(1 - 5x < 3 \), then
\[
\begin{align*}
&\text{(A)} \ x < -\frac{2}{5} \quad \text{(B)} \ x > -\frac{2}{5} \quad \text{(C)} \ x < \frac{2}{5} \quad \text{(D)} \ x > \frac{5}{2} \quad \text{(E)} \ x > \frac{5}{2}
\end{align*}
\]

59. Definition: A function \(f(x) \) has a minimum value at the number \(c \) if \(f(c) \leq f(x) \) for every \(x \) in the domain of \(f(x) \). If the domain of the function whose graph appears on the right is \([0,4]\), at which number does the function have a minimum value?

\[
\begin{align*}
&\text{(A)} \ 0 \\
&\text{(B)} \ 1 \\
&\text{(C)} \ 2 \\
&\text{(D)} \ 3 \\
&\text{(E)} \ 4
\end{align*}
\]

60. The side \(D \) in this triangle is
\[
\begin{align*}
&\text{(A)} \ 5 \\
&\text{(B)} \ 25 \\
&\text{(C)} \ \sqrt{12} \\
&\text{(D)} \ \sqrt{5} \\
&\text{(E)} \ \sqrt{7}
\end{align*}
\]

61. \((2\sqrt{3})(3\sqrt{6}) = \)
\[
\begin{align*}
&\text{(A)} \ 18 \\
&\text{(B)} \ 18\sqrt{2} \\
&\text{(C)} \ 108 \\
&\text{(D)} \ \sqrt{108} \\
&\text{(E)} \ 6\sqrt{108}
\end{align*}
\]

62. \(1 - \sin^2 \theta = \)
\[
\begin{align*}
&\text{(A)} \ -\cos^2 \theta \\
&\text{(B)} \ \cos^2 \theta \\
&\text{(C)} \ \cos \theta \\
&\text{(D)} \ \csc^2 \theta \\
&\text{(E)} \ -\cos(2\theta)
\end{align*}
\]

63. If \(f(x) = \cos(3x) \), then \(f(\pi/6) = \)
64. The circumference of a circle of radius R is
 (A) $2\pi R$ (B) R^2 (C) $\pi^2 R$ (D) $\pi^2 R^2$ (E) πR^2

65. Which of the following best represents the graph of $y = \sin x$ for x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

66. $\sin \theta \tan \theta \csc^2 \theta =$
 (A) $\tan \theta \sin^2 \theta$ (B) $\cos \theta$ (C) $\sin \theta$ (D) $\tan \theta$ (E) $\sec \theta$

67. For which value of x is $\tan x$ not defined?
 (A) $-\pi$ (B) $-\frac{\pi}{2}$ (C) 0 (D) $\frac{\pi}{4}$ (E) $\frac{\pi}{3}$
68. The area of a circle of radius R is

(A) $2\pi R$ (B) R^2 (C) πR (D) $\pi^2 R^2$ (E) πR^2

69. The angle a in this triangle is

(A) 45 (B) 60 (C) 120 (D) 30 (E) 90

70. The slope of line A is

(A) 4.0 (B) 3.3 (C) 3.0 (D) 0.25

71. If there are $(5/8)$ mile per km (kilometer) and 60 seconds in a minute, then 100 km/minute is about

(A) 3 miles/second (B) 4,000 miles/second (C) 6 miles/second
(D) 0.1 miles/second (E) 1 mile/second