Mathematical Methods and Numerical Techniques I — Homework Problems

1. **Reading Assignment**
 Read Boas, Chapter 3.10–3.11.

2. **Inverse Matrices**
 (Boas 3.6.15) Show that the following matrices A, B, C are all regular, and find the respective inverse matrices A^{-1}, B^{-1}, C^{-1}:

 \[
 A = \begin{pmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
 \end{pmatrix}, \quad
 B = \begin{pmatrix}
 2 & 0 & -4 \\
 -1 & 1 & 1
 \end{pmatrix}, \quad
 C = \begin{pmatrix}
 0 & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 0 & 1 & 0
 \end{pmatrix}.
 \]

3. **Determinants**
 (Boas 3.3.1, 3.3.6) Find the determinants $\det A, \det B$ of the following matrices:

 \[
 A = \begin{pmatrix}
 -2 & 3 & 4 \\
 3 & 4 & -2 \\
 5 & 6 & 3
 \end{pmatrix}, \quad
 B = \begin{pmatrix}
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 1 & 1 & 1 & 0
 \end{pmatrix}.
 \]

4. **Eigenvalue Problems**
 Consider the following three matrices A, B, C:

 \[
 A = \begin{pmatrix}
 \cosh \chi & \sinh \chi \\
 \sinh \chi & \cosh \chi
 \end{pmatrix}, \quad
 B = \begin{pmatrix}
 1 & 3 \\
 2 & 2
 \end{pmatrix}, \quad
 C = \begin{pmatrix}
 1 & -1 & 0 \\
 0 & 1 & -1 \\
 -1 & 0 & 1
 \end{pmatrix}.
 \]

 (a) Show that the eigenvalues of A are given by $\lambda_{\pm} = e^{\pm \chi}$. What are the corresponding (right) eigenvectors u_{\pm}? \hspace{1cm} (7 P.)

 (b) Find the eigenvalues λ_1, λ_2 of B, and establish a set of right eigenvectors $u_{1,2}$ with $Bu_{1,2} = \lambda_{1,2} u_{1,2}$, and a set of corresponding left eigenvectors $V_{1,2}$ with $v_{1,2}^T B = \lambda_{1,2} v_{1,2}^T$. Verify that $v_1 \cdot u_2 = u_1 \cdot v_2 = 0$. \hspace{1cm} (7 P.)

 (c) Show that the matrix C is normal, i.e., $C^T C = CC^T$ holds. \hspace{1cm} (3 P.)

 (d) Verify that the three eigenvalues of C are:

 \[
 \lambda_0 = 0, \quad \lambda_{\pm} = \frac{3}{2} \pm \frac{\sqrt{3}}{2} i.
 \]

 \[\text{— 1 —}\]
(e) Find the corresponding (right) eigenvectors of C, and show that a possible set is given by:

$$
u_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \nu_+ = \begin{pmatrix} 1 \\ \omega^2 \\ \omega \end{pmatrix}, \quad \nu_- = \begin{pmatrix} 1 \\ \omega \\ \omega^2 \end{pmatrix},$$

where $\omega = e^{2\pi i/3}$ is one of the third roots of unity. Verify that the left eigenvectors v_0, v_\pm are the complex conjugates of the right eigenvectors (apart from scaling):

$$v_0 = u_0, \quad v_+ = u_-^*, \quad v_- = u_+^* = u_+.$$