Physics 325: General Relativity
Spring 2012

Problem Set 3

Due: Thu 9 Feb 2012.

Reading: Please finish reading Chapter 6 in Hartle. In addition, please read Chapter 2. Box 2.3 on Map Projections is more relevant to general relativity than you might think. To represent the causal structure of infinite spacetime on a finite sheet of paper, we will use *Penrose diagrams*, which are equiangular projections of spacetime.

Problems:

1. **Aberration.** Hartle Problem 5.16.

2. **Relativistic Beaming.** Hartle Problem 5.17. Hints:

 To set up part (a), choose axes so that in the source frame S the wave 3-vector \vec{k} is lies the xy plane and makes an angle α with the observer velocity $\vec{V} = V \hat{x}$. To find the new angle α' in the observer frame S', transform the components of the wave 4-vector.

 In part (b), the solid angle between two cones of angle α and $\alpha + d\alpha$ is $d\Omega = 2\pi \sin \alpha d\alpha$. Solid angle refers to the area on the unit sphere ($\int \sin \theta d\theta d\phi$ in spherical coordinates), just as ordinary angle refers to the length on the unit circle ($\int d\phi$ in polar coordinates.)

3. **Frequency as measured by an accelerated observer.**

 Hartle Problem 5.18. Examples 5.9 uses a “trick” to find the shifted frequency of a photon as measured by an accelerated observer. This problem asks you to check the trick by using Lorentz transformations, or equivalently, the Doppler shift formula, Eq. (5.73).

4. **Lagrangian and Hamiltonian in special relativity.**

 In recitation section, we argued that the action for a massive particle in special relativity is $S = -mc^2 \int_{\tau_i}^{\tau_f} \, d\tau$, where τ is the proper time. Different parameterizations of the worldline give different Lagrangians. Hartle uses an arbitrary parameter σ in Sec. 5.4. In recitation
section we instead specialized to a particular Lorentz frame and used the time \(t \) in that frame. In this case, \(S = \int_{t_i}^{t_f} dt \mathcal{L}, \) where

\[
\mathcal{L}(\dot{x}) = -mc^2 \sqrt{1 - \dot{x}^2/c^2}.
\]

(a) What is the generalized momentum \(p \) in the \(x \) direction?

(b) What is the Euler-Lagrange equation for \(x \)?

(c) The Hamiltonian \(H(x, p, t) = p\dot{x} - \mathcal{L} \) gives the conserved energy of the particle. Show that

\[
H = \frac{mc^2}{\sqrt{1 - v^2/c^2}}.
\]

Here, \(v = v(p) \) is understood to be a function of the momentum. (By definition, the Lagrangian is a function of \(x, \dot{x}, t \) and \(H \) is a function of \(x, p, t \).)

(d) To find an explicit expression for \(H \) in terms of the momentum, first show that

\[
H^2 - p^2 c^2 = m^2 c^4,
\]

from parts (a) and (c). Then,

\[
H(p) = \sqrt{p^2 c^2 + m^2 c^4}.
\]

(e) If the motion is vertical near the earth’s surface (with \(x \) increasing downward), then we need to account for gravity. In the approximation that is \(g \) constant, the Hamiltonian becomes

\[
H(x, p) = \sqrt{p^2 c^2 + m^2 c^4} - mgx.
\]

Hamilton’s equations of motion are \(\dot{x} = \partial H/\partial p \) and \(\dot{p} = -\partial H/\partial x \). What are the resulting equations in this case? What is the limiting value of \(\dot{x} \) as \(p \to \infty \)?

(f) Solve for \(p = p(t) \). In natural units \((c = 1)\), show that the equation for \(\dot{x} \) becomes

\[
\frac{dx}{dt} = \frac{gt}{\sqrt{1 + g^2 t^2}}.
\]

Does this look familiar from last week’s problem set?