Ami Okazaki
Mentor: Jason Schmink
Chemistry Department

Palladium-catalyzed synthesis using 2,2-diphenyl-1,3-oxathiolanes

The characteristics of palladium-catalyzed chemistry is widely studied in the field of organometallics. As a transition metal, palladium’s multiple oxidation states help to facilitate the transfer of electrons and create bonds between two separate organic molecules that otherwise would not interact. In previous years, 2,2-dimethyl-1,3-oxathiolane was predicted to function as a nucleophile in palladium-catalyzed cross-coupling reactions with aryl halides, but due to the absence of electron-withdrawing groups, it unfortunately did not function as such nucleophile. This summer, we will focus on using 2,2-diphenyl-1,3-oxathiolanes instead, because this molecule contains electron-withdrawing groups and has the potential to undergo palladium-catalyzed cross-coupling with aryl bromides to create aryl vinyl sulfides, a synthetic compound in the field of organic chemistry not widely understood. In determining the optimal reagents and conditions needed for the efficient synthesis of our desired product, fundamental characteristics of individual atoms and electron-withdrawing groups will be considered in addition to varying the reaction time, temperature, and amount of catalyst used. By applying past understandings of thiolanes, oxathiolanes, and electron-withdrawing groups to our current project, we hope to gain a better understanding of the capabilities of palladium-catalyzed cross-coupling reactions.