Brittney Beidelman
Dr. Sun
Temple University Chemistry Department

Synthesis of SiO2 Spherical Nanoparticles

Efficient energy conversion is important for increasing the performance of photovoltaic and photocatalyic devices for harvesting solar energy. The addition of metal plasmonic nanoparticles to a semiconductor, like SiO2, helps improve solar energy conversion by generating hot electrons, when in the presence of solar energy. SiO2 is a semiconductor with a large band gap that absorbs in the ultraviolet (UV) range. Since the major portion of the solar spectrum that reaches the surface of the earth is in the visible range, research is being done for new materials that have a high absorption in the visible range. SiO2 has a high electron-accepting capability, which is useful for the absorption of solar energy. Metal plasmonic nanoparticles, such as Cu, Al, Pd, At, and Au, can be added to SiO2 in order to shift the absorption spectrum from the UV into the visible spectrum. SiO2 is almost transparent in the visible region, so any change in absorption can be attributed to the addition of nanoparticles. We will use a modified Stöber process to synthesize the SiO2 particles, which utilizes hydrolysis and nucleation to create the spherical nanoparticles. The goal is to consistently obtain uniform nanoparticles of various sizes in the 200-350nm range and analyze their performance in photocatalysis.