Nam Nguyen
Dr. Sharon J. N. Burgmayer
Department of Chemistry

The pathway to Molybdenum pyranopterin dithiolene complex

The transition metal Molybdenum plays an important role in living organisms because of the ubiquitous molybdenum-containing enzymes. Despite its relevance in biological lives, there is still little understanding about the molybdopterin chemistry. The first goal is to create ligands 2-pivaloyl-6-chloropterin and BMOPP to further develop the molybdenum complex that our research group has already successfully modeled [TEA][Tp*Mo(X)pterin-C(CH3)2R-dithiolene], where TEA stands for tetraethylammonium and Tp* is tris(3,5-dimethylpyrazolyl)hydroborate, X is either oxygen or sulfur atom and investigate the molybdenum pterin dithiolene chemistry. The quality of the compounds will be evaluated through the characterization techniques including NMR, IR, GC-MS, etc. Apart from focusing on reproducing results to examine the complex, my summer research also seeks to optimize our current procedures and raise the standards of our materials.