Nazifa Tabassum
Advisor: Sharon Burgmayer
Department: Chemistry

Synthesis of Molybdopterins

Molybdenum-containing enzymatic cofactors (Moco) are found in most living organisms except for in saccharomyces cerevisiae (baker’s yeast) and catalyze vital reactions in their bodies. They are also a part of the carbon, sulfur and nitrogen cycles in the environment, and act primarily as redox cofactors. Despite being ubiquitous in nature, molybdenum cofactors have been studied very little. Hence it is of importance to investigate their character and activity.

Moco have several active parts in addition to the metal (molybdenum) which include dithiolene and pterin. Molybdopterin is one of the most redox active ligands of Moco. In order to study molybdopterins, they must be synthesized. This synthesis is a lengthy, multistep process. First, 6-chloropterin is synthesized from starting material in a four-step process. It is then pivolated to produce 2-pivaloyl-6-chloropterin, which is then used to make BMOPP. BMOPP is the specific pterin precursor that is then used in the model molybdopterin dithiolene to be studied. Although it is difficult to characterize and determine the purity of the pterin solids synthesized due to their insolubility in water, NMR and IR spectroscopy are used for characterization purposes.