3.2 Sliding blocks with friction

Mass $M_A = 4 \text{ kg}$ rests on top of mass $M_B = 5 \text{ kg}$ that rests on a frictionless table. The coefficient of friction between the two blocks is such that the blocks just start to slip when the horizontal force F applied to the lower block is 27 N. Suppose that now a horizontal force is applied to the upper block. What is its maximum value for the blocks to slide without slipping relative to each other?

\[f = m_A a \Rightarrow a = \frac{f}{m_A} \]

\[F - f = m_B a \]

eliminate a

\[F - f = \frac{m_B f}{m_A} \]

\[F = f \left(1 + \frac{m_B}{m_A}\right) = f \left(\frac{m_B + m_A}{m_A}\right) \]

\[f = \frac{M_A F}{M_A + M_B} \]

Now apply force F' to top block instead

\[F' - f = m_A a' \]

\[f = M_B a' \Rightarrow a' = \frac{f}{M_B} \]

eliminate a'

\[F' - f = \frac{M_A f}{M_B} \]

\[F' = f \left(1 + \frac{M_A}{M_B}\right) = f \left(\frac{M_A + M_B}{M_B}\right) \]

\[f = \frac{F' M_B}{M_A + M_B} \]

Set two equal since

\[\frac{M_A F}{M_A + M_B} = \frac{M_B F'}{M_A + M_B} \]

\[\Rightarrow F' = \frac{M_A F}{M_B} = \frac{4}{5} 27 \text{ N} = 21.6 \text{ N} \]
- 3.4 Synchronous orbit

Find the radius of the orbit of a synchronous satellite that circles the Earth. (A synchronous satellite goes around the Earth every 24 h, so that its position appears stationary with respect to a ground station.) The simplest way to find the answer and give your results is by expressing all distances in terms of the Earth's radius R_e.

\[r_s = \frac{2\pi R_e}{T} \]

\[F = ma \]

\[
\frac{G M e m}{r_s^2} = m \frac{v^2}{r_s} = \frac{r_e^2 (G - m) m}{r_e^2 r_s^2} = m \frac{4 \pi^2 r_s^2}{r_s T^2} = \frac{4 \pi^2 r_s^2}{r_e T^2}
\]

\[
g = 9.8 \frac{m}{s^2} \]

\[
T = 24 \text{ hr} \times \frac{3600 \text{ s}}{1 \text{ hr}}
\]

\[
R_e = 6.4 \times 10^6 \text{ m}
\]

\[
r_s = R_e \left(\frac{G T^2}{4 \pi^2 r_e} \right)^{1/3}
\]

\[
r_s = 6.5 \times 10^6 \text{ m} = 42 \times 10^6 \text{ km}
\]
Mass and axle

A mass m is connected to a vertical revolving axle by two strings of length l, each making an angle of 45° with the axle, as shown. Both the axle and mass are revolving with angular velocity ω. Gravity is directed downward.

(a) Draw a clear force diagram for m.
(b) Find the tension in the upper string, T_{up}, and lower string, T_{low}.

\[
\begin{align*}
T_1 + T_2 &= m l \omega^2 \\
T_1 / \sqrt{2} + T_2 / \sqrt{2} &= m r \omega^2 \\
T_1 / \sqrt{2} - T_2 / \sqrt{2} &= -m g
\end{align*}
\]

\[
\begin{align*}
T_1 &= \frac{1}{2} m (l \omega^2 + \sqrt{2} g) \\
T_2 &= \frac{1}{2} m (l \omega^2 - \sqrt{2} g)
\end{align*}
\]
A block rests on a wedge inclined at angle θ. The coefficient of friction between the block and plane is μ.

(a) Find the maximum value of θ for the block to remain motionless on the wedge when the wedge is fixed in position.

(b) The wedge is given horizontal acceleration a, as shown. Assuming that $\tan \theta > \mu$, find the minimum acceleration for the block to remain on the wedge without sliding.

(c) Repeat part (b), but find the maximum value of the acceleration.
3.17 Turning car

A car enters a turn whose radius is R. The road is banked at angle θ, and the coefficient of friction between the wheels and the road is μ. Find the maximum and minimum speeds for the car to stay on the road without skidding sideways.

\[a = \frac{v^2}{R} \]

\[\Sigma F_x = ma \]
\[N \sin \theta - f \cos \theta = \frac{mv^2}{R} \]

\[N \sin \theta - \mu N \cos \theta = \frac{mv^2}{R} \]

\[\Sigma F_y = 0 \]
\[N \cos \theta + f \sin \theta - mg = 0 \]
\[N \cos \theta + \mu N \sin \theta = mg \]

divide I/II

\[\frac{N \sin \theta - \mu N \cos \theta}{N \cos \theta + \mu N \sin \theta} = \frac{mv^2}{R \cdot mg} \]

\[\frac{v_{\text{min}}}{v_{\text{max}}} = \sqrt{gR \left(\frac{\tan \theta - \mu}{1 + \mu \tan \theta} \right)} \]
\[v_{\text{max}} = \sqrt{gR \left(\frac{\tan \theta + \mu}{1 - \mu \tan \theta} \right)} \]
Find the frequency of oscillation of mass m suspended by two springs having constants k_1 and k_2, in each of the configurations shown.

(a) When mass is moved a dist x, spring 2 stretches by dist $x-d$ and spring 1 by dist d.

So on the mass spring 2 pulls us force

$$F_2 = -k_2 (x-d)$$

at point of connection between springs.

Spring 2 pulls us force $F_2 = k_2 (x-d)$

and spring 1 w/ force $F_1 = -k_1 d$.

Set the sum of these two to zero (assuming massless springs)

$$k_2 x - k_2 d - k_1 d = 0$$

Then solve for d

$$k_2 x = (k_2 + k_1) d \implies d = \frac{k_2 x}{k_1 + k_2}$$

Put this into F_2

$$F_2 = -k_2 \left(x - \frac{k_2}{k_1 + k_2} \right) = -k_2 \frac{k_2}{k_1 + k_2} \left(\frac{k_1 + k_2}{k_2} \right) x$$

$$F_2 = -k_{eff} x$$

So

$$\omega = \sqrt{\frac{k_{eff}}{m}} = \sqrt{\frac{k_1 k_2}{(k_1 + k_2) m}}$$
b) \[b_2 x - b_1 x = -(b_1 + b_2) x \]
\[= -k_{eff} x \]

so \[w = \sqrt{\frac{k_{eff}}{m}} = \sqrt{\frac{k_1 + k_2}{m}} \]