Philadelphia Area Number Theory Seminar

Ian Whitehead

Swarthmore College

Vinberg's Algorithm and the Classification of Maximal Hyperbolic Arithmetic Reflection Groups

Abstract:

Let Q be a quadratic form over \mathbb{Z} of signature (n, 1). The orthogonal group $O_Q^+(\mathbb{Z})$ is a discrete and finite-covolume subgroup of $O_Q^+(\mathbb{R})$, which can be viewed as the group of isometries of hyperbolic *n*-space. In many nice examples, $O_Q^+(\mathbb{Z})$ is a reflection group, or has a finite-index normal reflection subgroup Γ . I will discuss Vinberg's algorithm, which finds the maximal reflection subgroup of $O_Q^+(\mathbb{Z})$. I will give computational examples and applications of this algorithm. Finally, I will discuss the state of current knowledge on the problem of classifying maximal hyperbolic arithmetic reflection groups: which quadratic forms Q yield a finite-index normal reflection subgroup $\Gamma \subseteq O_Q^+(\mathbb{Z})$, and which hyperbolic reflection groups can be obtained in this way? This talk will be expository, and will not contain new results.

Thursday, March 3, 2022 3:25 – 4:45 PM

Swarthmore College Department of Mathematics and Statistics Science Center **149** Informal refreshments at 3:10PM