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Abstract 

This thesis broadly focuses on mathematical modeling approaches to solving 
various issues in sustainability, broken up into two parts, each dealing with specific, 
but distinct, sustainability issues. 

The first part of this thesis is expository, focusing on the modeling of groundwater 
flow and water table heights given limited information. We begin with the back
ground of the subject, examining how groundwater flow works in the physical world 
(Section 

-

1.1). We then delve into a derivation of Darcy’s Law for two-dimensional 
flow of groundwater from base principles (Section 1.2). From there we derive the 
two-dimensional Laplace equation for flow (Section 1.5). We then develop a central 
difference approximation to solve for intermediate water table heights between two 
given points, and intermediate water table heights given boundary conditions by 
solving a system of linear equations (Section 1.6). We then examine two methods of 
solving this system of linear equations, and compare rates of convergence for both 
(Section 1.8). We also implement both of these methods into solvers in MATLAB 
(Appendix 4.1, 4.2, 4.3). 

The second part of this thesis is case-based problem solving in a different area 
of mathematics. We use queuing theory and simulation principles to determine 
the number of electric car chargers needed to support an electric vehicle fleet on 
the Bryn Mawr campus, based on current usage numbers for Bryn Mawr vehicles. 
The model takes in the number and type of electric vehicles, along with their daily 
use. We then run a simulation to determine whether the current charger level can 
support the car use with minimal waiting in queues for the charger, depending on 
the number of available chargers. 
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Figure 1: Illustration of Aquifer 

1 Part I: Groundwater Flow 

1.1 Background 

In this section, we follow the presentation of Math Modeling in the Environment Hadlock 
[1998]. We shall begin with an explanation of the basic mechanics of groundwater 
flow and the motivation for research into this phenomenon. 

Below the surface of the Earth lie several layers of soil and rock. The spaces 
between these subsurface soil particles are filled with groundwater. Groundwater 
flows through the spaces between soil particles, flowing in the direction of the steep
est decline of the land. Groundwater does not flow quickly, but it is always flowing. 
Water on the surface of the Earth becomes groundwater either through precipitation 
seeping into the ground or through surface bodies of water seeping into the ground. 
These sources fill up open spaces in the subsoil up till a certain height. This height 
is called the water table. Because the underground cannot be directly observed, 
we need to make models to understand how groundwater is behaving given only a 
few data points. We can understand the direction and rate of flow of ground wa
ter, along with the locations at which contamination may have been added to the 
groundwater. 

-

-

-
Surface bodies of water are in fact portions of the water table that extend above 

the land. Water below the water table is groundwater. The portion of the under
ground through which groundwater flows without obstruction is called the aquifer. 
The water table aquifer is the portion of the subsurface just below the water table. 

In Figure 1, the upland pond serves as a source of water into the water table 
aquifer. We can alternatively refer to this as a source of groundwater recharge. 
This is not the only possible source for groundwater recharge. A large portion of 
precipitation on the surface of the earth also seeps into the ground, while the rest 
evaporates or runs directly into surface water bodies. 
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In Figure 1, the river serves as a discharge zone for groundwater, as the ground
water from the aquifer can return to the surface via the river by entering the stream 
bank below the river’s surface. 

-

-

-

This is where the large-scale impact of groundwater becomes clearer. While 
groundwater does not move quickly, it moves steadily, and pollution of groundwa
ter has a cumulative effect. For example, if groundwater flows along a number of 
contaminated site, at the end of these sites, the groundwater will be highly contami
nated, as all the contaminants will have entered the groundwater. This groundwater 
can enter discharge zones and will contaminate the surface water steadily. 

Aquifers generally consist of two types of material – soil and bedrock. In order 
of decreasing particle size, some common materials making up soil include gravel, 
sand, silt, and clay. Bedrock can be made of a variety of types of solid rock. While 
groundwater can pass through spaces between soil particles, groundwater cannot do 
so in bedrock, but some bedrock, like sandstone, is porous, while other bedrock, like 
limestone, has interconnected fracture networks. Thus water can flow through both 
soil and bedrock. 

-These different materials can be classified based on how much they resist wa
ter flow. Aquicludes are materials which block water flow entirely. Aquitards are 
materials which significantly resist water flow. Some examples of aquitards for soil 
include clays and fine silts. Bedrock aquitards include salt as well as unfractured 
formations of shale or granite. 

The water table most often follows the topography of the land, but there can also 
be distinct aquifers of different depths, flowing independently and separated from one 
another by aquicludes. Additionally, deeper aquifers may have flow patterns more 
complex than simply the topography of the surface due to the distance between 
recharge zones, the effect of fault zones, as well as pressure from the rock above. 

We shall now discuss the motivation for study of groundwater flow, and quanti
tative questions that can be addressed using our study. Take the following scenario: 

-

Consider the scenario illustrated in Figure 2, where the dotted lines show con
tours of constant water table heights. Suppose we have a “small leak” from a tank 
stored underground at the service station. If residents live close to the service sta
tion and rely on drinking groundwater from an area close to the station, we may be 
concerned about contamination of this water. 

-

-

Suppose a leak occurs from corrosion in an gasoline storage tank. Then the 
surrounding soil would be contaminated, and so rainwater seeping through the soil, 
along with the natural forces of gravity would carry the contaminant down to the 
aquifer, from where the contaminant would be constantly carried in the direction of 
general groundwater movement (indicated by red arrows). 

This leads to the following crucial questions: We want to understand how much 
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Figure 2: A Scenario of Contaminants Spread By Groundwater 

gasoline leaked, for how long it has been leaking, as well as the direction and speed 
of groundwater flow. 

A series of steps can be taken to understand and answer our questions, beginning 
with underground sampling using test and monitoring wells. These are holes sunk 
through one or more layers of subsurface soil, lined with pipe so that we may gather 
water from our point of interest. However, these wells are disruptive to the area and 
expensive. We want to use math so that we can answer our questions while using 
fewer wells. 

The questions we are asking can be broken down into two broad questions: 
I. How much groundwater is flowing through a portion of an aquifer? This is 

useful because if we can figure out the rate at which contaminant is seeping into the 
groundwater, we can estimate contaminant concentration in the groundwater. This 
question can be answered by Darcy’s Law, which we will be deriving in Section 1.2. 

II. What is the rate at which the groundwater is flowing? Answering this allows 
us to understand how far contamination might have spread since it was first intro
duced, as well as the amount of time left to keep it from spreading much farther. 
This question can be answered by the interstitial velocity equation, which will be 
derived in Section 

-

1.2. 
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Figure 3: Baseline Experiment 

1.2 Derivation of Darcy’s Law and Interstitial Velocity Equa

tion 
-

-

We shall begin by deriving Darcy’s Law from first principles. The intuition we 
shall use is backed up by Darcy’s experiments. We wish to better understand how 
groundwater flows through different geologic mediums. We can begin with a “base
line experiment” of sorts in Figure 3 in which we understand flow rates through 
different size sand filters. 

This baseline consists of a piston pushing water forward with pressure P through 
a sand filter of length L and cross-sectional area A. There is a pressure gradient 
across the sand filter, and on the other side of the sand filter, the pressure is 0, so 
the water can freely flow with rate Q through the sand filter. 

First, let us try to understand how pressure might affect flow rate. It is clear 
through intuition that doubling pressure, P , should double the flow rate, Q, and so 
we see that P ∝ Q. 

Now let us say that we double the length of our geologic sample/sand filter. 
Then since the pressure uniformly decreases along the length of our sand filter, it 
follows that with the same pressure P and an doubled length of sand filter L, the 
flow rate Q will be halved. This means that 

L 
1 ∝ Q, or that flow rate and sample 

length are inversely proportional. 
Finally, let us consider the cross-sectional area of our sample/sand filter. If we 

double the area, A, keeping the pressure, P , the same, we can flow through twice as 
much water, Q, and so A ∝ Q. 

Now, to better relate this to groundwater flow specifically, let us alter our baseline 
experiment. Instead of using a piston as our source of pressure for water, we can 
use the weight of a column of water to drive water pressure, as seen in Figure 4. 

The pressure caused by the column of water is due to the height difference in 
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Figure 4: Darcy’s Experiment for Groundwater Flow 

the water table. Numerically, this is the difference in heights, or ∆h = h1 − h2. If 
h1 = h2, then the water pressure is equal on both sides so no flow would occur, as 
the system would be at equilibrium. However, if h1 > h2, then pressure on the left 
side would be greater than the pressure on the right side, resulting in a pressure 
gradient. Then there would be flow from the left to the right until an equilibrium 
is reached. 

To summarize, we have that: 

1. The flow rate is proportional to the net driving pressure, ∆h. 

2. The flow rate is inversely proportional to the length L of our geologic sample. 

3. The flow rate is proportional to the cross-sectional area A of our flow pathway. 

4. From intuition, the constant of proportionality for the above relationships 
depends on the geologic medium through which the water is passing. 

Combining these ideas, and replacing P with ∆h, we get Darcy’s Law, which 
states that 

Q k∆h 
= ,

A L 
where k is our aforementioned constant of proportionality, depending on the geologic 
medium. Let’s simplify this equation a bit, by separating flow rate Q on one side of 
the equation and combining some terms. 

Let us have 
∆h 

i = ,
L 
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and call i the hydraulic gradient, to represent the combined effect of the pressure 
difference on either side of the geologic medium and the length of the flow through 
that medium. If flow rate and pathway length are both doubled, the hydraulic 
gradient does not change. 

Thus our finalized Darcy’s Law reads 

Q = kiA. (1) 

Now we shall derive the Interstitial Velocity Equation, which tells us the rate at 
which groundwater is flowing through a medium. In order to derive this, let us begin 
by assuming that water is flowing through an aquifer according to the principle of 
Darcy’s Law. 

We shall then focus on a single square foot of this aquifer’s cross section, and 
assume this channel is an “open channel,” meaning it provides no resistance to the 
flow of water whatsoever. Let’s now assume that we know that 10 cubic feet of water 
is flowing out of the end of this cross section of the channel per minute. We can try 
to derive the flow rate of water in order for this velocity to be possible. Recall that 
we are looking at a cross-sectional area of 1 square foot. Thus 

velocity of water ft 10ft3 water exiting channel · 1 ft2 area = 
min min 

velocity of water ft3 10ft3 water exiting channel 
= 

min min 

Thus we find that the water must be flowing at a rate of 10 feet per minute. Another 
way of conceptualizing this problem is by viewing it as a volume problem – in order 
for x cubic feet of water to come out from a square foot area per minute, what length 
must the water have traveled in a minute? In mathematical terms, this is 

volume = area · length, 

where length is synonymous with velocity in this case, as seen in Figure 5. 
One thing to note about this concept is that this relationship holds regardless of 

porosity of the geologic medium. With a porous material, it is simply the case that 
the path through which the water flows will not be straight, but the net fluid flow 
velocity in the flow direction will be the same as though a portion had been entirely 
closed off instead, as illustrated in Figure 6. Thus the porosity, η, represents the 
percentage of the geologic medium through which water can flow. 

This net velocity along the axis of predominant flow is called the interstitial 
velocity, or the velocity of groundwater. This answers our question of how far a 
dissolved contaminant has traveled from the source over a period of time. 

10 



Figure 5: Illustration of Volume and Velocity Relationship 

Figure 6: Porous flow vs. Closed-off channel 
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In order to determine fluid velocity in an aquifer, we need the volumetric fluid 
flow through a unit cross-sectional analysis, then divide this by the porosity of the 
aquifer. 

Let q be the volumetric fluid flow through a unit cross-sectional area of an aquifer 
(we can do this by using Darcy’s Law and setting A = 1). Then we have for Darcy’s 
Law that 

Q = kiA, 

and so 
q = ki(1) = ki. 

Therefore we have for our velocity v that 

q 
v = 

η 
ki ⇒ v = ,
η 

the Interstitial Velocity Equation. 
It follows that after calculating velocity v, we can find the amount of time t it 

takes the groundwater to travel a certain distance d in direction of flow, since 

d d 
v = ⇒ t = . 

t v 

It is important to note that certain contaminants do degrade over time or enter 
into chemical reactions with the surrounding rock or soil matrix, reducing their 
mobility. However contaminant flow is still a ticking time bomb that can travel for 
long periods of time without detection. When detected, the extent of the problem 
and amount of contaminant may still be huge and result in costly or even infeasible 
remedial action. 

Now that we have derived equations to answer our most pressing mathematical 
questions about groundwater flow, we shall review the parameters in each of these 
equations. 

Recall that Darcy’s Law states that 

kA∆h 
Q = = kiA, 

L 

and that the Interstitial Velocity Equation states that 

q ki 
v = = . 

η η 

The parameters for each of these equations, as well as their units, are stated below. 
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k: hydraulic conductivity (length/time) 
i: hydraulic gradient (no units, the “slope” of water flow) 
A: cross-sectional area of flow pathway, or the portion of aquifer under consideration 
(area, length2) 
η: porosity (no units, represents the fraction of open space in aquifer material) 
Q: volumetric flow rate (volume/time, length3/time) 
q: flux, the volumetric flow rate through a cross-sectional area of one unit (length
/time) 

-

v: velocity of fluid (length/time) 
∆h: hydraulic head, the height of the water level above a given reference point 
(length) 
L: length of flow pathway under consideration (length) 

There are a few remarks to be made about these parameters. First, we notice 
that the hydraulic conductivity k, the flux q, and the velocity v of our fluid are all in 
the same units – length/time. However, they all represent vastly different ideas. The 
hydraulic conductivity is a constant of proportionality that depends on the geologic 
medium through which groundwater is flowing – it broadly represents how easily 
water flows through, and its units are length/time to correspond with the units 
for Darcy’s Law. On the other hand, the flux is the volumetric flow rate through 
a unit cross sectional area, so can be thought of as length3/time · 1/area, which 
equals length3/time · 1/length2, which in turn equals length/time after cancelling 
out like units. Finally, velocity is distance traveled per unit time, and so its units 
are length/time. 

The second remark is that porosity and hydraulic conductivity are not related. 
A more porous material may still be an aquitard or aquiclude. For instance, clay is 
porous but its pores are far too small for water to pass through. 

1.3 Construction of Contour Maps from Test Wells 

We can use test wells to determine the depth of the water table at certain points, 
and from these head values can construct a contour map of the water table. 

This contour map, like any other, shows us the locations of constant head values. 
It is particularly useful to know the the topography of the land, because the water 
table heights generally mirror the slope of the land above. Furthermore, groundwater 
usually flows in the direction of steepest descent – the gradient. Thus groundwater 
will flow perpendicular to the head contour line at that point. The reason that this 
is not always true of groundwater is because flow can still be deflected by the shape 
of fractures in bedrock, or by the orientation of pore spaces, but we shall ignore this 
case in the problems we study. 
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Figure 7: Continuous vs. Discrete i 

1.4 Continuous form of Darcy’s Law for One-Dimensional 
Flow 

Now we shall use our work in prior sections to derive the continuous version of 
Darcy’s Law. Recall Darcy’s Law, which states that 

ki 
Q = kiA and v = , with 

η 

∆h 
i = . 

L 
We had called the hydraulic gradient i the “slope” of water flow, and will now 

treat it as a derivative of the hydraulic head function, a continuous function taking 
a point in space to its hydraulic head height. 

For this section, we are treating flows as being sufficiently horizontal. In other 
words, we shall assume that the head value does not depend on the depth of the 
point at which we sample the aquifer – it only depends on where we are on the axis 
of horizontal flow. 

We will now start considering ∆h to be the loss in head rather than change in 
head, as seen in Figure 7. So, to get the hydraulic gradient i at a specific point x, 
we have 

−[h(x +∆x) − h(x)]
i = lim 

∆x→0 ∆x 
h(x +∆x) − h(x) 

= − lim 
∆x→0 ∆x 
dh ⇒ i = − . 
dx 

(2)

Therefore we find that 
dh 

Q = kiA = −k A. 
dx 
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Figure 8: Example One-Dimensional Flow Problem 

It then follows that 
  q −k dh

v = = dx . 
η η 

Now let us look at an application of the continuous form of Darcy’s Law to clearly 
understand implications of this equation. Suppose we have the following head values 
for points at x = 1000 and x = 3000, where h(1000) = 70 and h(3000) = 50, as 
illustrated in Figure 8. 

Due to the conservation of matter, the flow entering the left face of a geologic 
sample must equal the flow exiting the right face of a geologic sample. 

It then follows that qleft = qright, and so 

Qleft = −kileftA = −kirightA = Qright. 

Therefore ileft = ileft since the geologic medium and cross-sectional area must 
remain constant. Using equation 2, we find that 

h(3000) − h(2000) h(2000) − h(1000) 
= 

3000 − 2000 2000 − 1000 
50 − h(2000) h(2000) − 70)⇒ = 

1000 1000 
⇒ 50 − h(2000) = h(2000) − 70 

⇒ h(2000) = 60. 

We can make a couple of observations from this application. 

1. We must place strict constraints on any function representing hydraulic head 
distribution, especially if hydraulic conductivity k is assumed to be constant. 

2. There is an interplay between assumptions that a hydrologist might make 
about hydraulic conductivity and the predictions that might result concerning 
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hydraulic head values, as our equations directly depend on hydraulic conduc
tivity, k. 

-

In fact, under constant hydraulic conductivity, the hydraulic head function h 
must satisfy Laplace’s Equation: 

d2h 
= 0. 

dt2 

It follows that if the second derivative of h is 0, then the first derivative of h 
must be a constant, meaning that h is linear and so is of the form h(x) = mx + b 
for m, b ∈ R. Then 

hx = m and 

hxx = 0. 

Since water is incompressible, the net amount of fluid entering a fixed incremental 
volume at any moment must be 0, due to the laws of conservation of mass. 

1.5 Laplace Equation in 1 and 2 Dimensions 

We shall now prove that groundwater flow must satisfy Laplace’s Equation. First 
we will prove this for one dimension. Since Q = kiA by Darcy’s Law, and we just 
showed that 

flow through left face − flow through left face = 0 

⇒ k(−hx(x))A − k(−hx(x +∆x))A = 0 

Since we presume that the geologic medium is not an aquiclude, and the cross-
sectional area we are examining is nonzero, we can divide both sides by −kA, getting 

hx(x) − hx(x +∆x) = 0 
hx(x) − hx(x +∆x)⇒ = 0. 

∆x 

We can do this because we are assuming ∆x is a nonzero value. We can now try to 
take the limit of both sides as ∆x approaches 0, getting 

16 

hx(x)) − hx(x +∆x)
lim = lim 0 

∆x→0 ∆x ∆x→0 

hx(x)) − hx(x +∆x)⇒ lim = 0 
∆x→0 ∆x 

dhx⇒ = 0 
dt 

⇒ hxx(x) = 0 



As we took arbitrary x initially, it follows that hxx = 0 for all, x ∈ R, and so we 
have shown Laplace’s equation holds for 1 dimension. 

Now we shall derive Laplace’s Equation for increased dimensions. In one dimen
sion, we had 

-
hxx = 0, meaning that we could only have linear functions for solutions. 

However, for two or more dimensions, Laplace’s Equation gets a bit more compli
cated, and the space of “allowed” head functions exams. For instance, Laplace’s 
Equation in two dimensions states that 

-

hxx + hyy = 0, 

and Laplace’s Equation in three dimensions states that 

hxx + hyy + hzz = 0. 

It must be noted that these equations apply strictly to the case of isotropic aquifers 
(the geologic medium remains the same under the content being considered) with 
constant hydraulic conductivity k. 

We can rewrite the two-  and three-dimensional versions of Laplace’s Equation 
in terms of partial derivatives as follows: 

∂2h ∂2h
For two dimensions: + = 0 

∂x2 ∂y2 

∂2h ∂2h ∂2h
For three dimensions: + + = 0. 

∂x2 ∂y2 ∂z2 

Note that these are partial differential equations. Therefore, in order to solve them, 
we must make sure our solution fits a set of boundary conditions. This is analogous 
to what we did in our example in Section 1.4. 

We shall now derive Laplace’s Equation for flow in horizontal x and y directions, 
again assuming vertical flow is negligent. 

Think of Figure 9 as a three-dimensional situation, where z is perpendicular 
to the drawing. The flow in the z-direction is assumed to be negligible, but the 
aquifer does have a thickness, and z characterizes the position through that thick
ness. We are also assuming our aquifer, as before, is isotropic and uniform, so k will 
characterize our hydraulic conductivity throughout the medium. 

-

The net flow through the rectangular prism of incremental volume in Figure 10 
should be zero, as stated before, due to the conservation of mass. The fluid flux q 
is a vector with components q1 in the x-direction and q2 in the y-direction. Because 
we are assuming negligible vertical flow in the z-direction, we may assume that fluid 
can be entering through four of six faces – i.e. all the faces that are not the top 
or bottom face. We never need to consider z-coordinates for any points, because 
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Figure 9: Volume Increment in a Groundwater Flow Field Exhibiting 2D Flow 

Figure 10: Rectangular Prism of Incremental Volume 
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everything is assumed to be constant in the z-direction. 
Along the left face, the inward fluid flux (which may change with y) can be 

represented by the one specific fluid flux at the center of the left face, i.e. q1(x − 
∆x, y). This is the first component of the flux vector q, and is the only one relevant 
to the left face, because we do not care about y-component flow when looking exactly 
at the left face. 

We may make similar assumptions along the other three faces. From this, we 
get 

0 = left flow in + right flow in + up flow in + down flow in. 

Using our equations we derived for each of these sides from Figure 10, we get 

0 = q1(x − ∆x, y)(2∆y · 1) − q1(x +∆x, y)(2∆y · 1) 

+ q2(x, y − ∆y)(2∆x · 1) − q2(x, y +∆y)(2∆x · 1). 

From here, we may derive the two-dimensional Laplace Equation using our con
tinuous flux equation. 

-

0 = q1(x − ∆x, y)(2∆y · 1) − q1(x +∆x, y)(2∆y · 1) 

+ q2(x, y − ∆y)(2∆x · 1) − q2(x, y +∆y)(2∆x · 1) 

⇒ 0 = −h(x − ∆x, y)k(2∆y) + h(x +∆x, y)k(2∆y) 

− h(x, y − ∆y)k(2∆x) + h(x, y +∆y)k(2∆x) 

⇒ 0 = −2h(x − ∆x, y)∆y + 2h(x +∆x, y)∆y 

− 2h(x, y − ∆y)∆x + 2h(x, y +∆y)∆x. 

Now let us divide both sides by 2∆x∆y, both of which takes nonzero values only. 
Doing so, we get 

h(x +∆x, y) − h(x − ∆x, y) h(x, y +∆y) − h(x, y − ∆y)
0 = + 

2∆x 2∆y[ ]
h(x +∆x, y) − h(x − ∆x, y) h(x, y +∆y) − h(x, y − ∆y)⇒ lim 0 = lim + 

∆x→0 ∆x→0 2∆x 2∆y 
h(x +∆x, y) − h(x − ∆x, y) h(x, y +∆y) − h(x, y − ∆y)⇒ 0 = lim + 

∆x→0 2∆x 2∆y 
h(x, y +∆y) − h(x, y − ∆y)⇒ 0 = hxx(x) + 

2∆y[ ]
h(x, y +∆y) − h(x, y − ∆y)⇒ lim 0 = lim hxx(x) + 

∆y→0 ∆y→0 2∆y 
⇒ 0 = hxx(x) + hyy(y). 

Thus we have derived Laplace’s Equation for two dimensions. Functions satisfying 
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this property are called harmonic functions. 
There are two key characteristics to situations satisfying Laplace’s Equation: 

1. The flow of quantity is at a rate proportional to the gradient of some “potential” 
(pressure difference from varying hydraulic heads, in this situation). 

2. Conservation condition (conservation of mass and volume here) requiring that 
through the flow regime, no material spontaneously appears or disappears. 

We will now begin solving boundary problems using linear approximations in the 
next section. 

1.6 Numerical Methods for Solving Head Value Boundary 
Problem 

Our broad strategy to finding numerical solutions for head values is to find a system 
of linear equations that are a reasonable approximation to our partial differential 
equations. We then shall solve that system of equations. 

We know that the definition of a derivative is 

′ f(x +∆x) − f(x)
f (x) = lim . 

∆x→0 ∆x 

Thus, for small ∆x, it follows that 

′ f(x +∆x) − f(x)
f  (x) ≈ . 

∆x 

In fact, we see that if our function f does not have a high degree of curvature, the 
slope of the secant line is a reasonable approximation to the slope of the tangent 
line. 

Three different approximations can be seen from Figure 11. They are the forward 
difference approximation 

f(x +∆x) − f(x)
f ′ (x) ≈ ,

∆x 

the backward difference approximation, 

f(x) − f(x − ∆x)
f ′ (x) ≈ ,

∆x 

and the central difference approximation 
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f(x +∆x) − f(x − ∆x)
f ′ (x) ≈ . 

2∆x 



Figure 11: Examples of Linear Approximations of Function Values 

We can use the central difference approximation at the second derivative as follows: 

′ (x + ∆x ′ (x − ∆xf ) − f )′′ (x) ≈ 2 2f 
∆x 

f(x+∆x)−f(x) − f (x)−f (x−∆x) 
′′ (x) ≈ ∆x ∆x⇒ f 

∆x 
′′ (x) ≈ 

f(x +∆x) − 2f(x) + f(x − ∆x)⇒ f . 
2∆x 

Plugging this in to our hydraulic head functions, we get the following approxi
mations: 

-

h(x +∆x, y) − 2h(x, y) + h(x − ∆x, y)
hxx(x, y) ≈ 

2∆x 
h(x, y +∆y) − 2h(x, y) + h(x, y − ∆y)

hyy(x, y) ≈ . 
∆y2 

Recall that we derived the two-dimensional Laplace Equation, which states that 

hxx + hyy = 0, 

so plugging in these approximations, we get that 

h(x +∆x, y) − 2h(x, y) + h(x − ∆x, y) h(x, y +∆y) − 2h(x, y) + h(x, y − ∆y)
+ = 0. 

∆x2 ∆y2 

Suppose we have a site where the distance between wells in the x direction is 
d, and the distance between wells in the y direction is also d. Then our equation 
becomes 

h(x + d, y) − 2h(x, y) + h(x − d, y) h(x, y + d) − 2h(x, y) + h(x, y − d)
+ = 0. 

d2 d2 
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Figure 12: Example of Boundary Value Head Problem 

We can multiply both sides by d2 , and get 

h(x + d, y) − 2h(x, y) + h(x − d, y) + h(x, y + d) − 2h(x, y) + h(x, y − d) = 0. 

Simplifying this further, we see that 

4h(x, y) = h(x + d, y) + h(x − d, y) + h(x, y + d) + h(x, y − d), 

and dividing both sides by 4, we have 

1 
h(x, y) = (h(x + d, y) + h(x − d, y) + h(x, y + d) + h(x, y − d)). 

4 

As we can see in Figure 12, we find that, using this linear approximation, the water 
table height at a point (x, y) is simply the average of the water table heights in the 
x- and y- directions a distance of d away. 

Let us now look at this approximation applied to the following example: 
Suppose we want to find the height of h25, located at point (5000,1000). Using 

our approximation of the Laplace equation, with ∆x = ∆y = 1000, we get that 

340 − 2h25 + h20 h24 − 2h25 + 300 
0 = + 

10002 10002 

⇒ 0 = 340 + h20 + h24 + 300 − 4h25 

340 + h20 + h24 + 30 ⇒ h25 = 
4 
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Figure 13: Example Boundary Value Problem for 25 Wells 

23 



In other words, the head height of h25 is equal to the average of the four heads 
surrounding its cardinal directions. 

This leads us to the last portion of our work in water table height derivations. 
Now, given a set of boundary values of hydraulic head heights, we can solve a system 
of linear equations to find the hydraulic head heights at the interior points. 

1.7 Constructing a System of Linear Equations for Water 
Table Heights 

In order to understand how to construct our system of linear equations, let us take 
a look at an example problem. Suppose we want to find the water table heights 
ai in a 3 × 3 square, where the boundary values bPi are provided (where P is their 
position, like top, bottom, left, or right, and i is their index in that position. For 
instance, bL3 is the third entry in the left boundary). The set up looks something 
like this: 

bT L bT 1 bT 2 bT 3 bT R 

bL1 a1 a2 a3 bR1 

bL2 a4 a5 a6 bR2 

bL3 a7 a8 a9 bR3 

bBL bB1 bB2 bB3 bBR 

Let us call the side length of our square of unknown values r. In this case, 
r = 3. So we have to solve a r2, or 9-variable, system of 9 linear equations. We have 
found that the value of a hydraulic head height is the average of the four heights 
surrounding it – thus, we can view each of our linear equations as corresponding to 
the average of one of our unknowns. 

For example, the equation corresponding to head value a7 is: 

a2 + a12 + a6 + a8 
a7 = 

4 
⇒ 0 = a2 + a6 − 4a7 + a8 + a12 

We can classify our unknowns into three categories: corner unknowns, border 
unknowns, and center unknowns. Corner unknowns, like a1, a3, a7, and a9, border 
exactly two known boundary values, as seen above. Border unknowns, like a2, a4, a6, 
and a8, border exactly one known boundary value, as seen above. Finally, center 
unknowns, like a5, border no known boundary values. As r increases, we find that 
the majority of unknowns will be center unknowns, but in our current example, only 
a5 is a center unknown. We use this classification in order to set up generalizations 

24 



for the different linear equations we will see corresponding to the averages of each 
of these types of unknown. 

Let us begin by considering the system of equations for center unknowns. We 
can see that for any non-corner, non-boundary head value ai, the corresponding 
linear equation is of the form: 

(Center unknowns) ai: ai−r + ai−1 − 4ai + ai+1 + ai+r = 0. 

Now let us consider what happens at corner unknowns. In our specific r = 3 
example, the entries at the corners are entries a1, a3, a7, and a9. 

In an arbitrary head value problem, the corner unknowns would be the top left 
corner, a1, the top right corner, ar (because it would be the last entry in the first 
row, and there are r entries per row, the bottom right corner, ar 2 (because it would 
be the last entry and there are a total of r2 entries), and the bottom left corner, 
ar2−r+1 (because it would be the first entry in the last row, and there are r entries 
per row, its index would be last entry−number of entries in row+1). We can verify 
that this generalization works for our specific example by plugging in r = 3, and 
getting corner entries of a1, a3, a7, and a9, as desired. 

Since the corner unknowns each involve exactly two known boundary values, 
they have a different set of equations: 

(Top left corner) a1: bT 1 + bL1 − 4a1 + a1+1 + a1+r = 0 

⇒ −4a1 + a2 + a1+r = −(bT 1 + bL1) 

(Top right corner) ar: bTr + ar−1 − 4ar + bR1 + ar+r = 0 

⇒ ar−1 − 4ar + a2r = −(bTr + bR1) 

(Bottom left corner) ar2−r+1: ar2−r+1−r + bLr − 4ar2−r+1 + ar2−r+1+1 + bB1 = 0 

⇒ ar2−2r+1 − 4ar2−r+1 + ar2−r+2 = −(bLr + bB1) 

(Bottom right corner) ar2 : ar2−r + ar2−1 − 4ar2 + bBr + bRr = 0 

⇒ ar2−r + ar2−1 − 4ar2 = −(bBr + bRr) 

Finally, let us consider the equations corresponding to the border unknowns, 
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which border exactly one known boundary value each. Their equations are as follows: 

(Top border unknowns) ai: bT + ai−1 − 4ai + ai+1 + ai+r = 0 

⇒ ai−1 − 4ai + ai+1 + ai+r = −bT 

(Left border unknowns) ai: ai−r + bL − 4ai + ai+1 + ai+r = 0 

⇒ ai−r − 4ai + ai+1 + ai+r = −bL 

(Right border unknowns) ai: ai−r + ai−1 − 4ai + bR + ai+r = 0 

⇒ ai−r + ai−1 − 4ai + ai+r = −bR 

(Bottom border unknowns) ai: ai−r + ai−1 − 4ai + ai+1 + bB = 0 

⇒ ai−r + ai−1 − 4ai + ai+1 = −bB 

We can combine these linear equations to get a system of equations of the form 
Ax = b. For our example with r = 3, our system of equations comes out to [ ][ ] [ ]

−4 1 0 1 0 0 0 0 0 x1 −(b   + b )| || | | T1 L1
 || 1 −4 1 0 1 0 0 0 0 ||x2| | −b| T2 || | | |  || | −    0  0 1 4 0 0 1 0 0 || | | |||x3| |−(bT 3 + bR1)|| || | | || 1 0 0 −4 1 0 1 0 0 ||x4| | −b| L2 || | | |  || 0 1 0 1 −4 1 0 1 0 || | | || ||x5| = | 0 || || | | || 0 0 1 0 1 −4 0 0 1 ||x6| | −bR2 || || | | ||  | 0 0 0 1 0 0 −4 1 0 || | | |||x7| |−(b| || | | L3 + bB1)|  || 0 0 0 0 1 0 1 −4 1 ||x8| | −bB2 | 

0 0 0 0 0 1 0 1 −4 x9 −(bB3 + bR3) 

Now that we have a method of constructing a system of linear equations, we can 
explore different ways of quickly solving these systems. 

1.8 Iterative Methods 

Because solving large systems of equations can be quite time intensive, we will 
explore two iterative numerical methods of approximating solutions to a system of 
linear equations: the Jacobi and Gauss-Seidel methods. Iterative methods of solving 
systems of linear equations are often much faster than Gaussian elimination. The 
two methods we are focusing on have a computational complexity on the order of 
n2 , whereas Gaussian elimination has complexity on the order of n3. These are both 
iterative numerical methods, meaning that they ideally converge to an exact solution 
over time. The following analyses of iterative methods, the Jacobi Method, and the 
Gauss-Seidel method follow work by David M. Strong in 2005 Strong [2005]. 

Iterative numerical methods can be thought of as a modification of an original 
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system of equations. The original system is of the form Ax = b, where A is our 
coefficient matrix, x is our vector of unknowns, and b is a column vector of constants. 

These two iterative numerical methods take the form 

 Mx(k+1) = Nx(k) + b 

⇒ x (k+1) = M−1  Nx(k) + M−1b 

⇒ x (k+1) = Bx(k) ~ + b, 

where B = M−1N and ~  b = M−1b for invertible square matrices M and N . We will 
discuss the significance of M and N shortly. We call B our iteration matrix. We 
have converged to our exact solution x when x (k+1) = x (k) = x, meaning that x is 
the fixed point of our equation. At x, we see that 

  x = Bx + ~b 
⇒ x = M−1Nx + M−1b 

⇒ Mx = Nx + b 

⇒ (M − N)x = b. 

Recall that our original system of equations had that Ax = b, so it follows that 
A = M − N . However, we must note that choosing M and N such that A = M − N 
does not alone guarantee convergence. Convergence depends on our iteration matrix 
B = M−1N . We can examine the conditions for convergence to occur by looking at 
the error e(k) between our k + 1st iteration x(k+1) and exact solution x. Recall that 

  x = Bx + ~b and (3) 

x( k+1) = Bxk + ~b  (4)

Subtracting (4) from (3), we get 

  x − x (k+1) = B(x − x(k)) + ~b− ~b 
( k) ⇒ e = Be(k−1)

= B(Be(k−2)) 

= Bn e( k−n)

(k) ⇒ e = Bk e(0) 
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We can then take the norm of both sides, getting that 

 ||e(k)|| = ||Bke0 || 

≤ ||B||k||e(0)||. 

Thus, it follows that our error e(k) converges to 0 if and only if ||B|| < 1. We notice 
that the smaller ||B|| is, the faster our error will converge to 0, and so the faster our 
approximation will converge to our exact solution x. However, we must also note 
that if ||B|| > 1, our error will grow. 

One way we can guarantee that ||B|| < 1 is by making sure that our original 
coefficient matrix A is strictly diagonally dominant, meaning that for each row of 
A, the absolute value of the diagonal element is strictly larger than the sum of the 
absolute values of the off-diagonal elements. However, there do exist non-diagonally 
dominant matrices that still converge Strong [2005]. In fact, the system of linear 
equations for the boundary value problem is a non-diagonally dominant matrix that 
converges to a solution. 

1.9 The Jacobi Method 

Let us explore the first iterative method: the Jacobi Method. Recall that our original 
system of equations is of the form 

Ax = b, 

where A is our coefficient matrix, x is our vector of unknowns, and b is a column 
vector of constants. We can split our matrix A into three components: a lower 
triangular matrix L (which does not include diagonal entries), a diagonal matrix D, 
and an upper triangular matrix U (which also does not include diagonal entries), 
which all sum to A. Then we have Then we have 

Ax = b 

⇒ (L + U + D)x = b 

⇒ (L + U)x + Dx = b 

⇒ Dx = −(L + U)x + b 

⇒ x = D−1[−(L + U)x + b]. 

If x is our exact solution, then we can see from above that we must have x = 
D−1[−(L + U)x + b]. Thus we have 

M = D and N = −(L + U), 
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such that 
M − N = D − (−L − U) = L + U + D = A. 

Thus our iterative matrix B is 

B = D−1(−(L + U)), 

and our ~b is 
b = D−1b. ~ 

1.10 The Gauss-Seidel Method 

Now let us consider our second iterative method: the Gauss-Seidel Method. Let 
us similarly decompose our original coefficient matrix A into L, U, and D such that 
A = L + U + D. Then we have 

Ax = b 

⇒ (L + D + U)x = b 

⇒ (L + D)x + Ux = b 

⇒ (L + D)x = −Ux + b 

⇒ x = (L + D)−1[−Ux + b]. 

If x is our exact solution, then we can see from above that we must have x = 
(L + D)−1[−Ux + b]. Thus we have 

M = (L + D) and N = −(U), 

such that 
M − N = L + D − (−U) = L + U + D = A. 

Thus our iterative matrix B is 

B = (L + D)−1(−U), 

and our ~b is ~ b = (L + D)−1b. 

1.11 Remarks 

We implemented both these solvers in MATLAB (see Appendix 4.1, 4.2, 4.3), and 
compared rates of convergence for both. We find that it takes approximately twice 
as many iterations in the Jacobi solver to achieve the same level of accuracy as the 
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Gauss-Seidel solver. We experimented with error bounds for different powers of 10 
and found this to consistently be the case. This is due to ||B|| = λmax, the largest 
eigenvalue, being different in each case. In fact, the norm of the iterative matrix for 
the Jacobi Solver (0.866) is the square root of the norm of the iterative matrix for 
the Gauss-Seidel matrix (0.75) in our example from Figure 13. Examples of results 
and eigenvalues for Example 13 for each method are included in Appendix 4.4 and 
4.5. 
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2 Part II: Models for Electric Vehicle Charger Use 

The second part of this thesis broadly focuses on modeling the usage of electric 
car chargers on the Bryn Mawr College campus based on current usage data. We 
constructed a queuing simulation to get a rough idea of the number of electric 
chargers that would be needed to adequately support usage if all non-bus College 
vehicles were switched to their electric counterparts. 

We find in Section 2.6 that switching all of Bryn Mawr’s non-bus vehicles to 
their electric counterparts could be supported by just 6 Level 2 chargers, and that 
the sixth charger would be available quite often, making it a possible candidate for 
public use. Bryn Mawr College should move towards replacing their vehicle fleet, as 
the present vehicles age out, with their equivalent electric vehicle alternatives, and 
support them with an electric behicle charging network of 6 chargers. 

2.1 Motivation 

Climate change has been a pressing issue since the dawn of the industrial revolution, 
but the urgency with which we must alter our behavior has been increasing over the 
past few years. The Intergovernmental Panel on Climate Change (IPCC) published 
a report in 2019 on the 1.5 ◦C increase in global temperature since pre-industrial 
times on Climate Change [2019]. One of the primary methods of mitigation for this 
climate change is reduction of greenhouse gas emissions. According to the EPA, 27% 
of greenhouse gas emissions are due to transportation Agency [2020], and of that 
27%, about 58% of these emissions are from passenger vehicles Agency [2019]. As a 
result, a switch to electric vehicles, powered by electric motors rather than burning 
fuel, is a key component of reducing carbon emissions on a large scale. Bryn Mawr 
College has set a goal of reaching net zero carbon emissions by 2035 College [2021], 
and a key part of reducing emissions is switching its fleet to electric vehicles. This 
section aims to understand the number of chargers that would be needed on campus 
to support switching the College’s non-bus vehicles to their electric counterparts. It 
is important to note that all college-owned non-bus vehicles could be replaced with 
electric versions. 

2.2 Problem Background and Assumptions 

Before we explain the design of our queuing simulation, we shall explain the back
ground of the problem to provide some context for design choices. 

-

We are assuming that each College car drives around a certain amount each day, 
and depletes their battery each day based on the distance traveled. We assume that 
once the car has used eighty percent of its usable battery capacity, it returns to a 
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charger to fully recharge. If all chargers are occupied, the car enters the last spot in 
the virtual queue and will not be used until it finishes charging. 

We are assuming all chargers are Level 2 chargers, which means that they charge 
cars at a constant rate of 7 kilowatts. For those vehicles for which we have mileage 
data, we are using data from time since purchase to calculate daily use and charging 
frequency. For vehicles without mileage data, we are making an estimate of their 
mileage use by comparing with the data for other similar college-operated vehicles. 

There are five categories of college vehicle. The electric counterparts, along with 
the mileage con [2022] and usable battery capacity, are listed below: 

Car Type 
Range 
(miles) 

Usable Battery Capacity 
(kWh) 

Mileage 
(miles/kWh, range ) battery capacity 

Time to charge 80% 
(hours, mileage ⌈ ⌉

7 )
8-person Minivan 

 
 

 
 

 

350 111 3.15 16 
Passenger Van 140 80 1.75 12 

Cargo Van 126 68 1.85 10 
SUV 220 71.4 3.08 11 

Pickup Truck 230 98 2.35 14 
High Roof 126 68 1.85 10 

For each car with usage data, we divided the most recent odometer mileage 
reading by the number of years since the car had been purchased in order to get 
yearly use, then derived daily use from there. We divided the range for the model 
by the daily distance traveled in order to calculate the frequency of charging. The 
makes of these electric counterparts are listed in Appendix 4.6. Note that every 
car had an electric alternative. The data for nineteen cars was available, and their 
models, daily use, department, and charging frequency are listed below, in Table 1. 
This data is from Bryn Mawr College Transportation con [2022]. For cars whose 
usage data was not available (cars 20-40), we assumed a charging frequency of 15 
days. This is because we based usage off of campus safety vehicle usage, since we 
assumed facilities vehicles would be moving around with about the same frequency. 

We looked at the usage of Level 2 chargers given this set of electric vehicles. We 
assumed that if a car arrived when all chargers were already being used, they waited 
in a virtual queue, during which the car was not used and was presumably parked 
until a charger was available. We also wanted to consider that if a car was left to 
charge overnight, it would not be retrievable until the morning, so we wanted to 
introduce a period of “inactivity” for the charger during which vehicles could not be 
retrieved from chargers and could not begin charging. 
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Car Number Original Model Department Electric Model 
Daily Use 
(miles) 

Frequency of Charging 
(days) 

Time to Fully Charge 
(minutes) 

1 Odyssey van 
Transportation 

(Rental) 
Minivan 67.48 4.1 960 

2 RAV4 Campus Safety SUV 21.49 8.2 660 

3 RAV 4 
Lantern Van 

(Campus Safety) 
SUV 18.51 9.5 660 

4 E350 pass. van Athletics Passenger Van 11.40 9.8 720 
5 E350 pass. van Athletics Passenger Van 10.25 10.9 720 
6 E-350 pass. Van Athletics Passenger Van 9.99 11.2 720 
7 RAV4 Campus Safety SUV 11.77 15.0 660 
8 Suburban Geology SUV 11.18 15.7 660 
9 Outback Biology SUV 9.15 19.2 660 

10 1500 Cargo van 
Dining Services 

(Wyndham) 
Cargo Van 4.65 21.7 600 

11 Cargo Van Post Office Cargo Van 4.27 23.6 600 

12 Handicap van 
Transportation 

(Rental) 
Minivan 6.39 43.8 960 

13 Caravan 
Transportation 

(Rental) 
Minivan 5.75 48.7 960 

14 Ram Van 
Transportation 

(Rental) 
Minivan 5.71 49.0 960 

15 Civic -  CNG 
Transportation 

(Rental) 
SUV 3.57 49.3 660 

16 2500 CNG van 
LITS 

(Multimedia) 
Cargo Van 1.92 52.6 600 

17 Caravan 
Transportation 

(Rental) 
Minivan 4.59 61.0 960 

18 NVNV High Roof Dining Services High-roof 1.16 86.6 660 

19 Sodena -  4 dr wagon 
Transportation 

(Bi-Co) 
Minivan 1.69 165.5 960 

20 F250 Pickup Truck Facilities Pickup Truck N/A 15 840 

21 F250 pickup 
Facilities 

(Carpenters) 
PICKUP N/A 15 840 

22 E150 cargo van 
Facilities 

(Carpenters) 
Cargo Van N/A 15 600 

23 E150 cargo van 
Facilities 

(Electricians) 
Cargo Van N/A 15 600 

24 E150 cargo van 
Facilities 

(Electricians) 
Cargo Van N/A 15 600 

25 F350 pickup 
Facilities 
(Grounds) 

Pickup Truck N/A 15 840 

26 F250 pickup 
Facilities 
(Grounds) 

Pickup Truck N/A 15 840 

27 F350 utility body 
Facilities 
(HVAC) 

Pickup Truck N/A 15 840 

28 F250 Utility body 
Facilities 
(HVAC) 

Pickup Truck N/A 15 840 

29 Transit Conn. Van 
Facilities 
(HVAC) 

Cargo Van N/A 15 600 

30 Transit 150 LR cargo van 
Facilities 
(HVAC) 

Cargo Van N/A 15 600 

31 Transit 
Facilities 
(HVAC) 

Cargo Van N/A 15 600 

32 utility Caravan 
Facilities 

(Locksmith) 
Cargo Van N/A 15 600 

33 Closed utilitybody 
Facilities 

(Plumbing) 
Pickup Truck N/A 15 840 

34 F350 utility truck Facilities Pickup Truck N/A 15 840 
35 E150 cargo van Facilities Cargo Van N/A 15 600 
36 Suburban Geology SUV N/A 15 660 
37 F-150 Housekeeping Pickup Truck N/A 15 840 
38 F350 Stake body Housekeeping Pickup Truck N/A 15 840 
39 Transit Van Housekeeping Cargo Van N/A 15 600 

40 Odyssey van 
Transportation 

(Rental) 
Minvan N/A 15 960 

Table 1: Table of Car Data for Bryn Mawr College 
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Figure 14: Overall Structure for System Behavior 

2.3 Methodology and Development 

We wanted our model to follow a basic overall structure. Cars would be used until 
they reached 20% charge, at which point, they would head to a charging station 
to charge. When they arrived at the charging station, they would plug in and 
begin charging if a charger was available. If not, they would enter the queue and 
only begin charging once they were at the front of the queue and a charger became 
unoccupied. While in the queue, the car would not be used further. When a car 
plugs in to charge, it charges fully. Once finished charging, it stops occupying the 
charger and goes back to being used until it hits 20% charge again. When a car 
leaves the charger, we plug in any car at the front of the queue immediately. This 
process is illustrated in Figure 14. 
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While this system is fairly simple at first glance, there are many moving parts. 
Of note are three submethods: first, the way in which initial car arrival times at 
stations are handled (Section 2.3.1), second, the way the queue is handled (Section 
2.3.2), and third, the way we can implement rest hours for the chargers (Section 
2.3.3). These submethods also tie into the overall structure of the simulation, which 
deals with how we look at the passage of time in the simulation (Section 2.3.4) and 
how cars move through the system in the simulation (Section 2.3.5). 

2.3.1 Initial Arrival Generation Methods 

There were multiple ways to handle the initial time of arrival for cars at the charge 
station. The first way to generate initial arrival times for cars was to assume that 
all cars began the simulation fully charged, and have their initial arrival time equal 
the frequency of charging. However, in our Bryn Mawr case, cars 20-40 all have a 
frequency of 15 days, meaning that on day 15 of the simulation, there would be a 
huge overflow of cars. Furthermore, over time, the cars arrival times would space 
out due to time spent waiting in the queue for a charger. Therefore, we decided 
to forego waiting for the cars to stagger their arrival times as the simulation ran, 
and instead staggered arrival times in the first place. The second way of generating 
initial arrival times was to think of it as cars beginning the simulation with a random 
amount of charge. That way, we generated initial arrival times randomly for each 
car, with values ranging from 0 minutes into the simulation up to the frequency of 
charging for that car. This second method was the one we ended up using for our 
simulation. This submethod for generating initial arrival times is called the arrivals 
function. 

2.3.2 Queue Handling Methods 

We also considered how the queuing system worked for this simulation. The first 
method of queuing assumed that a car arriving at an occupied charging station knew 
at what time the a charger would be soonest available, and would enter the queue 
for that charger. Future cars arriving would know the availability time for the next-
soonest available charger and would enter the queue for that charger, and so on until 
every charger had a car in the queue. However, future cars that arrived would have 
no idea of how long the cars in the queue would take to finish charging, so instead 
of entering the queue, would return to try to grab a spot some fixed amount of time 
in the future. While this method worked, we found that it is instead feasible to set 
up one virtual queue for all the chargers. Under this new system, there would just 
be one queue for all the chargers, with unlimited capacity. Once all chargers were 
occupied, if a new car arrived, it would enter the end of the queue and stop being 
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used. As soon as a charger was available, whoever was at the front of the queue 
would occupy that charger, leaving the queue and moving the next person in the 
queue to the front. This system is possible in practice due to virtual queues being 
in common usage in the world; one can easily set up a system to keep track of a 
queue and notify a driver as soon as a charging spot opens up. This second method 
is the queuing method we utilized for our final simulation. 

2.3.3 Implementation of Nighttime Hours 

Now understanding how the queuing system worked for our simulation, we had to 
consider the practicality of some of its aspects. Suppose a spot opened up at 3 AM? 
It is unreasonable to assume that a driver would wake up to go and plug in the car 
to charge at that hour. Similarly, suppose a car finished charging at 3 AM? Again, 
it is unreasonable to assume that a driver would wake up to unplug the car from the 
charger. For this reason, we wished to introduce hours of inactivity, or “nighttime 
hours,” for the simulation. For a stretch of time each day, cars would not be able to 
arrive at the charger and would not be able to leave the charger due to personnel not 
being available to perform those tasks during that time. The exact algorithm used 
to calculate whether or not it was nighttime in the simulation, isnight, is discussed 
in Section 2.4. 

2.3.4 Event- vs. Time-Driven Simulations 

Moving onto broader, structure-based questions, we consider the question of how 
the simulation moves through time. In our simulation, we are looking at how cars 
pass through the system and charge over time. There are two approaches to under
stand how the simulation handles this. The first approach is called an event-driven 
simulation, in which our simulation only moves forward when events occur. For 
example, the first version of our simulation began with this event-driven structure 
based on the ship harbor queuing model from A First Course in Mathematical Mod
eling 

-

-
Giordano et al. [2015]. Instead of iterating over time, the simulation iterated 

over the number of cars charged over the run time of the simulation. A flowchart 
of this simulation is depicted in Figure 15. The simulation moves forward by con
sidering only the arrival time of the next car – time itself is not tracked on its own. 
For example, the first car arrival time is generated, and then the arrival time of the 
next car is generated based on the arrival time of the first car. Then we look at the 
difference between the arrival time of the second car and the time at which the first 
car finishes charging, and determine whether the second car needs to wait or not. 
Once the second car’s charge finish time is calculated, we generate the third car’s 
arrival time based on the arrival time of the second car, and repeat until we have run 

-
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through the number of cars we wanted to consider in our simulation. At first glance, 
a number of issues crop up with this event-driven simulation. Rather than looking 
at the behavior of our system over a period of time, we follow a certain number of 
cars and see what happens over that time. Furthermore, since arrival times are so 
closely linked between consecutive cars, we have a much “flatter” simulation, with 
less room to maneuver with staggered arrival times. Furthermore, as we will discuss 
in Section 2.3.5, this method makes it impossible to keep track of specific instances 
of cars after they leave their charger. 

For this reason, we switched to a time-driven structure for our final simulation, 
in which, as the name suggests, the simulation increments over time rather than over 
car arrivals. In this case, the simulation begins at time zero and runs for a fixed 
length of time. At each minute, the system checks if a car has arrived or finished 
charging, and handles the system accordingly, then increases time by 1. At the next 
time unit, it does the same, and so on until the simulation has run through the 
desired length of time. 

2.3.5 Open- vs. Closed-Network Queuing Simulations 

Finally, we wanted to consider how cars moved through the system outlined in 
Figure 14. There are two ways to approach how cars move through the system. The 
first method is an open-network queuing system, in which a car is created, moves 
through the process of entering a queue and charging, and once finished charging, 
leaves the system and cannot return to charge again. The process illustrated in 
Figure 15 is an example of an open-network queuing system. Each car is generated, 
moves through the system, then is effectively destroyed. However, for our specific 
case we could not have this happen. We intended to explore the usage behavior of 
a specific 40-car fleet of vehicles, and in order to do so, would need to have cars 
preserved as they moved through the system. For that reason, we switched to a 
closed-network queuing system. 

In a closed-network queuing system, as the name implies, the cars moving 
through the system are a specific set of cars. In our case, there were a set of 
40 cars moving through the processes of being used and depleting charge, arriving 
at the chargers, waiting in queue if necessary, then charging and returning back to 
being used once fully charged. 

As a result, the final simulation algorithm was a Time-Driven Closed-Network 
Queuing Simulation. The final simulation algorithm is included, with comments, 
in Appendix 4.7. A flowchart of this final simulation is depicted in Figure 17, and 
Section 2.4 will discuss the full algorithm in more detail. 
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Figure 15: Event-Driven Open Network Queuing Simulation 
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2.4 In-Depth Explanation of Final Simulation Algorithm 

As stated before, our final simulation was a time-driven closed network queuing 
simulation, referred to as a TDCN queuing simulation. Rather than having time 
move forward as determined by arrival times, at each unit of time, we check if 
an event occurs, then increment time by one, hence the term “time-driven”. This 
simulation relied on four nested functions, each of which will be described below: 

isnight function: This function informs us if a given time is during the hours of 
inactivity for the chargers. 

Input: t (timestamp in minutes), n (number of hours of inactivity) 
Output: 1 if t is within the period of inactivity, 0 if not 
Step 1: Calculate nextstart, the timestamp of start of active period for next 
day (in minutes). 

nextstart = ⌈ t ⌉ · 24 · 60
24·60 

Step 2: Calculate time (in minutes) until start of active period for next day. 
timetillnext = nextstart − t 

Step 3: If the time till the start of the next active period is less than n hours, 
but more than 0 minutes, we are in the inactive period. 

if timetillnext < n · 60 AND timetillnext > 0: 
return 1 

Step 4: Else, we are in an active period. 
else return 0 

generate_car function: This function generates the timestamp (in minutes) at 
which a given car will leave the charger. 

Input: t (timestamp in minutes), car_name (identity of car being charged), n 
(number of hours of inactivity) 
Output: timestamp in minutes at which car is fully charged and can be retrieved 
from the charger 
Step 1: Generate charge finish time for car based on car name, without 
considering whether car can be retrieved at that time. 

chargetime = t + car_profile[car_name] 
Step 2: Check if car can be retrieved at that time. 

inactive = isnight(chargetime, n) 
Step 3: If car cannot be retrieved then, change retrieval time to earliest possible 
time. 

if inactive = 1: 
return ⌈ t ⌉ · 24 · 60

24·60 
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Step 4: If car can be retrieved then, return that time. 
else return chargetime 

The remaining function is the charger selection function, select_charger, which 
is described in Figure 16. The function first calls the time of arrival of the car. If the 
car would arrive during nighttime, it is instead supposed to arrive at the beginning 
of the next day, so the function returns a -1, effectively adding the car to the end 
of the queue (the queue is checked at the start of each day so that cars that would 
start charging first thing in the morning can do so). If the car would arrive during 
daytime, we check each charger to see if it is occupied. The value of the first 
unoccupied charger is returned. If no charger is unoccupied, the function returns 
-1, and so the car is added to the end of the queue. 

Figure 16: Charger Selection Function for TDCN Queuing Simulation 
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These functions combine to form the overall simulation. The initial arrival 
times of all cars are generated (arrivals), and we find the soonest arrival time, 
time_pointer, of a car by taking the min of all arrival times. Then we set the time 
to equal 0 and run the following loop while time is less than timespan, the length 
of time for which the simulation runs. At each time unit, four processes are run in 
order. 

1. (Orange) We check whether it is the start of a new day. If it is and any cars 
would have arrived the previous night, they instead arrive at this point. Cars 
that arrive at night go into the queue based on their order of arrival during 
the night. We check the queue to see which cars arrived the previous night 
and occupy all chargers possible (select_charger, generate_car), removing 
these cars from the queue. As soon as no chargers are available, we move to 
the next process. 

2. (Green) We check all chargers to see if any cars just finished charging. If 
any have, we remove them from the charger and generate their next arrival 
time based on their charging frequency. Once this charger is unoccupied, 
we check if there are any cars in the queue. If there are, the frontmost car 
occupies this charger and its finish time is generated based on which model 
it is (generate_car). Note that the finish time of a car factors in whether 
it finishes charging at night or during the day. This car is removed from the 
queue. After we have checked to see if all fully-charged cars have been dealt 
with, we move on to the next process. 

3. (Purple) Finally, we check if any cars have arrived by checking if the current 
time is greater than time_pointer, which was the min of all arrival times. If the 
time is greater than time_pointer, we check which car is arriving and select a 
charger or enter the queue (select_charger) based on availability and time of 
day. If we occupy a charger, we generate finish charge time (generate_car). 
As soon as a car arrives, its next arrival time is set to the simulation time 
length + 1 so that it is not the minimum arrival time value. This is so that we 
avoid a case where a car is slated to arrive while it is still charging; generally, 
setting next arrival time to any very large value would work. At this point, 
we change time_pointer to equal the next soonest arrival time, determined by 
taking the min of all arrival times. 

4. Increase time by 1. 

We run Steps 1-4 until the simulation has run through the desired length of time. 
This process is detailed in Figure 17. 
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Figure 17: Time-Driven Closed-Network Queuing Simulation Flowchart 
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2.5 Debugging 

We used three visual representations of our results to debug the simulation. 
Our first visual, Figure 18, displayed activity at each of the chargers over time. 

At each minute in the simulation, we plotted whether the charger was occupied, 
and if it was, which car was occupying the charger. That way we were able to 
check when each car began and finished charging. When we incorporated inactivity 
periods for the chargers, we made sure that no car finished charging during the 
periods of inactivity. We were also able to verify that no car was charging in two 
chargers at once, and were able to verify that if a car was charging, the charger was 
not also marked as being unoccupied. In Figure 18, the blue lines represent whether 
it is nighttime or not. If the blue line is nonzero, it is nighttime, and if the blue line 
is zero, it is daytime. If the other lines are positive, their values correspond to which 
car is charging at that time. For example, if a line has value X with X > 0, car X 
is being charged. If their values are negative, then that charger is unoccupied. For 
example, if a line has value Y with Y < 0, charger Y is unoccupied. 

Figure 18: Plot of Charger Activity Over Time 

Our second visual, Figure 19, graphed, for each car in the queue, the time spent 
waiting in the queue versus the time since the start of the simulation. We plotted 
this superimposed with the length of the queue at each minute. This allowed us to 
verify that the queue portion of our algorithm was working correctly. We can use 
this visual to note that for these parameters, all waiting time occurred during the 
nighttime, indicating that there was no charger back up outside of night hours. 
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Figure 19: Plot of Minutes Waited Since Arrival 

Our third visual, Figure 20, graphed, for each charger, the amount of time left 
until the charger would be unoccupied. This allowed us to make sure that cars 
finished charging fully before they left, and that charger selection prioritization was 
working systematically, as intended. 

Figure 20: Plot of Minutes Left Until Charger Unoccupied 

The main issues we ran into while debugging had to do with very small coding 
errors. For example, defining something based on a variable created within a func
tion, or missing a set of parentheses when defining a range of values. These tools 
allowed us to catch those errors very quickly. 

-

2.6 Results 

We now examine our 40-car fleet’s usage patterns (Section 2.2), based on the usage 
detailed in Table 1. We compare average and maximum wait times (Table 2), 
along with usage amounts by charger (Table 3), for 10, 6, 5, and 4 charger systems 

44 



with nighttime lengths of 0, 8, and 12 hours. We run each simulation over six 
months. Number of cars charged over this length of time does not vary much 
with changing parameters, so we did not post these results. Because we are using 
randomly-generated initial arrival times, we posted the results for each combination 
of parameters averaged over 20 runs. 

0 hours of nighttime 8 hours of nighttime 12 hours of nighttime 
10 chargers (0,0) (36.8, 473.7) (65.3, 679.5) 
6 chargers (0.2, 37.1) (49.1, 483.7) (72.0, 700.9) 
5 chargers (0.9, 186.5) (48.5, 559.4) (71.6, 797.0) 
4 chargers (5.4, 346.5) (52.3, 676.3) (89.2, 1018.8) 

Table 2: Average Wait Time, Maximum Wait Time (minutes) 
Over 20 Six-Month Runs of TDCN Queuing Simulation 

0 hours of nighttime 8 hours of nighttime 12 hours of nighttime 

10 chargers 

55.75% 60.60% 67.76% 
37.70% 42.58% 48.35% 
20.66% 24.85% 29.61% 
8.52% 11.20% 15.67% 
2.73% 4.01% 6.60% 
0.64% 0.88% 2.07% 
0.14% 0.14% 0.68% 
0.00% 0.02% 0.16% 
0.00% 0.00% 0.04% 
0.00% 0.00% 0.00% 

6 chargers 

56.48% 59.05% 68.22% 
37.76% 41.97% 47.92% 
20.51% 24.53% 30.24% 
8.16% 11.58% 15.03% 
2.47% 4.24% 6.50% 
0.89% 1.27% 2.15% 

5 chargers 

56.56% 58.88% 68.05% 
37.95% 42.40% 48.63% 
20.73% 25.33% 30.98% 
8.09% 11.66% 15.83% 
2.48% 4.14% 6.37% 

4 chargers 

57.42% 61.25% 69.03% 
38.56% 44.13% 50.31% 
21.42% 25.68% 32.45% 
8.75% 11.43% 17.37% 

Table 3: Average Percent of Time Each Charger Was Used Over 20 Six-Month 
Runs of TDCN Queuing Simulation 
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For 10 chargers, we find that for all tested nighttime lengths, only 6 out of 10 
of the chargers are used for more than 1 percent of the total time. As a result, we 
explored how wait times and usage amounts looked for 6, 5, and 4 chargers. We 
find that there is a tipping point between 5 and 4 chargers, where the average wait 
time for a 0-hour nighttime increases from 0.9 minutes to 5.4 minutes, blowing up 
by a factor of six. This is indicative of a major pileup problem between 5 and 4 
chargers. Furthermore, looking at the 12-hour case for 5 and 4 chargers, we see that 
the maximum wait time increases from 797.0 minutes to 1018.8 minutes, an increase 
of around 3.5 hours, when previous wait times increased by only around 1.5 hours. 
This tells us that 4 chargers is far too few to support the College’s needs. However, 
we see relatively small differences between 6 and 5 chargers in the 8 and 12 hour 
nighttime length scenarios, meaning that around 5 or 6 chargers may be suitable to 
meet the College’s needs. We also want to note that for 10 and 6 charger systems, 
the maximum wait time closely matches up with the rest length, and so the wait 
time is likely due to that. We would want to discuss more with the drivers of College 
vehicles to get a better idea of what wait times are acceptable. 

2.7 Questions for Further Exploration 

There are some further refinements we would like to make to the simulation, outlined 
below: 

1. This model could be refined further by taking into account consistency of 
usage. For example, an athletics rental vehicle would be used sparsely, but 
would be used for very long trips, whereas the post office van would be used 
consistently for small distances daily. 

2. Introduce level 3 chargers, which charge rapidly from 20% to 80% of battery 
capacity, as another charger option. Also introduce a method, perhaps linked 
with priority, of choosing which charger to use when both are available. This 
way highly-used campus safety vans, for example, have priority to use faster 
chargers so that they may be used for long stretches of each day. 

3. Make car day-to-day usage have a partially random element, and occur in a 
range of values rather than a fixed value. 
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3 Final Recommendation 

This work clearly shows us that under current usage assumptions, switching all of 
Bryn Mawr’s non-bus vehicles to their electric counterparts could be supported by 
just 6 Level 2 chargers, and that the sixth charger would be available quite often, 
making it a possible candidate for public use. 

Bryn Mawr College should move towards replacing their vehicle fleet, as the 
present vehicles age out, with their equivalent electric vehicle alternatives, and sup
port them with an electric behicle charging network of 6 chargers. 

-
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4 Appendix 

4.1 Coefficient Matrix for System of Equations 

# finding r and initializing coefficient and constant 
vectors 

r = length(bT); 
A = zeros(r^2,r^2); 
b = zeros(r^2,1); 

# "center" head equation generation 
for i = 0:(r-3) 

for j = ((i*r)+(r+2)):((i*r)+(2*r -1)) 
A(j,j-r) = -1; # top 
A(j,j-1) = -1; # left 
A(j,j) = 4; # self 
A(j,j+1) = -1; # right 
A(j,j+r) = -1; # bottom 

endfor 
endfor 

# top boundary head equation generation , excluding 
corners 

for j = 2:(r-1) 
b(j) = bT(j); 
A(j,j-1) = -1; # left 

A(j,j) = 4; # self 
A(j,j+1) = -1; # right 
A(j,j+r) = -1; # bottom 

endfor 

# bottom boundary head equation generation , excluding 
corners 

for j = (r^2-r+2):(r^2 -1) 
b(j) = bB(j-(r^2-r+2) +2); 
A(j,j-r) = -1; # top 
A(j,j-1) = -1; # left 
A(j,j) = 4; # self 
A(j,j+1) = -1; # right 
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endfor 

# left boundary head equation generation , excluding 
corners 

 

 

for j = (1+r):r:(r^2-2*r+1) 
b(j) = bL(((j-1)/r)+1); 
A(j,j-r) = -1; # top 
A(j,j) = 4; # self 
A(j,j+1) = -1; # right 
A(j,j+r) = -1; # bottom 

endfor 

# right boundary head equation generation , excluding 
corners 

for j = (2*r):r:(r^2-r) 
b(j) = bR(j/r); 
A(j,j-r) = -1; # top 
A(j,j-1) = -1; # left 
A(j,j) = 4; # self 
A(j,j+r) = -1; # bottom 

endfor 

# top left corner head equation generation 
b(1) = bT(1)+bL(1); 
A(1,1) = 4; # self 
A(1,2) = -1; # right 
A(1,1+r) = -1; # bottom 

# top right corner head equation generation 
b(r) = bT(r)+bR(1); 
A(r,r) = 4; # self 
A(r,r-1) = -1; # left 
A(r,2*r) = -1; # bottom 

# bottom left corner head equation generation 
b(r^2-r+1) = bL(r)+bB(1); 
A(r^2-r+1,r^2-r+1) = 4; # self 
A(r^2-r+1,r^2-r+1-r) = -1; # top 
A(r^2-r+1,r^2-r+2) = -1; # right 
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# bottom left corner head equation generation 
b(r^2) = bR(r)+bB(r); 
A(r^2,r^2) = 4; # self 
A(r^2,r^2-r) = -1; # top 
A(r^2,r^2 -1) = -1; # left 
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4.2 Solver and Analysis for Jacobi Method 

clc 
format short 

function heads = JacobiVals(bT,bB ,bL,bR ,errbound) 
# computing exact values 
A; 
b; 
headval = A\b; 

# calculating iteration matrix for Jacobi B 
# & displaying its eigenvalues 
B = inv(diag(diag(A)))* -1*(tril(A,-1)+triu(A,1)); 
eigenB = eig(B); 
maxeigenB = max(abs(eigenB)); 

# for loop for examining convergence of Jacobi method 
btilde = inv(diag(diag(A)))*b; 
errval = 1; 
erratio = []; 
errvec = [errval ]; 
iterations = 0; 
approxhead = zeros(r^2,1); 
while errval > errbound 

approxhead = B*approxhead + btilde; 
iterations = iterations + 1; 
errval = norm(approxhead -headval); 
errvec = [errvec errval ]; 
erratio = [erratio errval/errvec(iterations)]; 

endwhile 

# compare ratio of errors vs max magnitude eigenvalue 
of B 

erratio = erratio (2:end); 
hold on 
plot (1: length(erratio),erratio) 
plot (1: length(erratio), maxeigenB*ones(1,length(erratio

))) 
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legend(’Ratio␣of␣error␣over␣time’,’Maximum␣magnitude␣

eigenvalue␣of␣B’) 
hold off 

# OPTIONAL: displaying exact head values 
# (can be replaced w/ approximate head values) in a 

grid 
heads = zeros(r,r); 

for i = 1:r 
for j = 1:r 

plusval = mod(j,r); 
if plusval == 0 

plusval = 5; 
endif 
heads(i,j) = headval (((i -1)*r)+plusval); 

endfor 
endfor 
disp (["The␣total␣number␣of␣iterations␣needed␣to␣get␣to␣ 

an␣error␣of␣", 
num2str(errbound),"␣from␣an␣initial␣guess␣of␣all␣zeros␣

was␣", 
num2str(iterations ),"."]) 

endfunction 

bound_top = [260 280 300 315 340]; 
bound_bottom = [210 225 245 270 300]; 
bound_left = [230 220 215 210 205]; 
bound_right = [360 355 350 345 340]; 

actualval = JacobiVals(bound_top ,bound_bottom ,bound_left , 
bound_right ,.001) 
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4.3 Solver and Analysis for Gauss-Seidel Method 

clc 
format short 

function heads = GaussSeidelVals(bT,bB,bL,bR,errbound) 
# computing exact values 
A; 
b; 
headval = A\b; 

# calculating iteration matrix for Gauss - Seidel B & 
displaying its eigenvalues 

B = inv((tril(A, -1)+diag(diag(A))))* -1*triu(A,1); 
eigenB = eig(B); 
maxeigenB = max(abs(eigenB)); 
eig(B); 
B 
# for loop for examining convergence of Gauss - Seidel 

method 
btilde = inv((tril(A,-1)+diag(diag(A))))*b; 
errval = 1; 
erratio = []; 
errvec = [errval ]; 
iterations = 0; 
approxhead = zeros(r^2,1); 
while errval > errbound 

approxhead = B*approxhead + btilde; 
iterations = iterations + 1; 
errval = norm(approxhead -headval); 
errvec = [errvec errval ]; 
erratio = [erratio errval/errvec(iterations)]; 

endwhile 

# compare ratio of errors vs max magnitude eigenvalue 
of B 

erratio = erratio (2:end); 
hold on 
plot (1: length(erratio),erratio) 
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plot (1: length(erratio), maxeigenB*ones(1,length(erratio 
))) 

legend(’Ratio␣of␣error␣over␣time ’,’Maximum␣magnitude␣ 
eigenvalue␣of␣B’) 

hold off 

# OPTIONAL: displaying exact head values 
# (can be replaced w/ approximate head values) in a 

grid 
heads = zeros(r,r); 

for i = 1:r 
for j = 1:r 

plusval = mod(j,r); 
if plusval == 0 

plusval = 5; 
endif 
heads(i,j) = headval (((i -1)*r)+plusval); 

endfor 
endfor 
disp ([ "The␣total␣number␣of␣iterations␣needed␣to␣get␣to␣

an␣error␣of␣", 
num2str(errbound),"␣from␣an␣initial␣guess␣of␣all␣zeros␣

was␣", 
num2str(iterations ),"."]) 

endfunction 

bound_top = [260 280 300 315 340]; 
bound_bottom = [210 225 245 270 300]; 
bound_left = [230 220 215 210 205]; 
bound_right = [360 355 350 345 340]; 

actualval = GaussSeidelVals(bound_top ,bound_bottom , 
bound_left ,bound_right ,.01) 
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4.4 Results for Jacobi Solver for 25-well Example 

head_values = 
251.21 272.03 292.62 312.78 335.92 
242.82 264.29 285.67 307.57 330.88 
235.77 256.63 278.22 300.96 325.05 
228.62 248.26 269.61 293.00 318.35 
220.45 238.17 258.96 283.08 310.36 

max Btilde eigenvalue = 
0.8660 
Number of iterations to get to .01 total error from initial guess of 
all zeros = 
82 

4.5 Results for Gauss-Seidel Solver for 25-well Example 

head_values = 
251.21 272.03 292.62 312.78 335.92 
242.82 264.29 285.67 307.57 330.88 
235.77 256.63 278.22 300.96 325.05 
228.62 248.26 269.61 293.00 318.35 
220.45 238.17 258.96 283.08 310.36 

max Btilde eigenvalue = 
0.75 
Number of iterations to get to .01 total error from initial guess of 
all zeros = 
42 

4.6 Electric Car Alternatives for Bryn Mawr Vehicles 

Car Type Alternative Model Link to Specs 

8-person Minivan 
Volkswagen 

ID Buzz 
topelectricsuv.com/news/volkswagen/vw-id-buzz-update/ 

 

 

 

 

 

Passenger Van 
Lightning Electric 

Passenger Van 
lightningemotors.com/lightningelectric-ford-transit-shuttle/

Cargo Van 
Ford 

2022 Cargo Van 
ford.com/commercial-trucks/e-transit/models/cargo-van

SUV 
Subaru 
Solterra 

topelectricsuv.com/news/subaru/subaru-electric-car-fresh-details

Pickup Truck 
Ford 

F150 Lightning 
ford.com/trucks/f150/f150-lightning/

High Roof 
Ford 

2022 Cargo Van 
(different height from Cargo Van) 

ford.com/commercial-trucks/e-transit/models/cargo-van
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4.7 Time-Driven Closed Network Queuing Simulation Code 

# SIMULATION PARAMETERS 
timespan = 6*28*24*60 # length of time for which 

simulation runs (minutes) 
num_chargers = 10 # number of chargers 
restlength = 8 # number of hours chargers are "inactive" 
num_cars = 40 
weekvec= seq(1,( timespan/(24*60)),by =7) 

# NESTED FUNCTIONS 
isnight_function = function(ct,n) { 

ns = ceiling(ct/(24*60))*24*60 
ttn = ns -  ct 
if (ttn < n*60 && ttn > 0){ 

return (1) 
} else{ 

return (0) 
} 

} 

arrivalsvector = function () { # generate vector of car 
arrivals 
carnames = c(1: num_cars) # number/’name ’ of car 
frequency_charge = c(ENTER VALUES FROM TABLE) # 

frequency of charge (minutes) 
charging_length = c(ENTER VALUES FROM TABLE) # time 

needed to fully charge (minutes) 
for (i in 1:num_cars){ 

arrival_timestamp[i] = runif(1,0, frequency_charge[i]) 
# randomly generate first arrival time 

} 
# arrival_timestamp = frequency _charge # time of first 

arrival from start of clock (in minutes) -- this 
changes as the simulation runs 

arrivals = array(c(carnames ,frequency_charge ,charging_

length ,arrival_timestamp),dim=c(num_cars ,4)) # 
compile into one array 
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return(arrivals) 
} 

generate_car = function(car_name ,arrvec ,time) { # 
generate car profile/car charge finish time 
charge_time = time + arrvec[car_name ,3] # pull time to 

fully charge from vector of charging times by car 
# check if in active hours --  if not , adjust finish 

time 
nextstart = ceiling(charge_time/(24*60))*24*60 # 

calculate time of start of next day (when finished 
charging) 

timetillnext = nextstart -  charge_time # calculate time 
until start of next day 

if (timetillnext <= restlength*60 -1) { # if less than 
restlength hours left (i.e. if chargers are inactive 
) 
return(nextstart) # then we add the car to the queue 

} 
return(charge_time) 

} 

select_charger = function(chargvec ,time) { # select which 
charger for a car to use , if available 

# check if in arrival hours --  if not , add to queue 
nextstart = ceiling(time/(24*60))*24*60 # calculate 

time of start of next day 
timetillnext = nextstart -  time # calculate time until 

start of next day 
if (timetillnext <= restlength*60-1 && timetillnext >0) 

{ # if less than restlength hours left (i.e. if 
chargers are inactive) 
return (-1) # then we add the car to the queue

} 

# else if we are within arrival hours , check for 
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available chargers 
for (i in 1:dim(chargvec)[1]) { # go through list of 

chargers 
if (chargvec[i,1] == 0) { # if unoccupied 

return(i) # select charger 
} 

} 
return (-1) # else return -1 for no chargers available 

} 
# END OF FUNCTIONS 

# START CLOCK 
t = 0 # start clock at time = 0 

# GENERATE ARRIVAL TIMES 
arrivals = arrivalsvector () # generate car arrival times 
# arrivals = arrivalscopy 

# INITIALIZE POINTERS and QUEUES 
present_car_arrival = arrivals[which.min(arrivals [,4]) ,1] 

# initialize name of current car that has arrived 
arrivals_time_pointer = arrivals[present_car_arrival ,4] # 

initialize time pointer for car arrivals (time after 
which to check for arrivals) 

arrival_number = present_car_arrival # initialize " 
arrival index pointer" = which arrival (in terms of 
ordering) we are considering next 

chargers = array(c(numeric(num_chargers),numeric(num_

chargers)),dim=c(num_chargers ,2)) # initialize charger 
availability (and which car is at which charger) 

charger_queue = array(c(numeric (1000) ,numeric (1000)),dim = 
c(1000 ,2)) # initialize queue for chargers 

charger_queue_pointer = 1 # initialize queue pointer at 1

st entry in queue 
charger_queue_length = 0 # initialize value of number of 

cars waiting in queue 
first_car_in_queue = 0 # initialize name of first car in 
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queue 

isnight = numeric(timespan) # initialize night switch 

nextstart = 0 
timetillnext = 0 

# INITIALIZE OUTPUTS 
CHARGETIME = numeric(num_chargers) # total time chargers 

are in use 
cars_served = 0 # total number of cars charged 
wait_time = 0 # average wait time per car 
carplot = array(numeric(timespan),dim =c(timespan ,num_

chargers)) # array to store which car is in which 
charger at time t 

queueplot = numeric(timespan) # array to store number of 
cars in queue at time t 

waitplot = array(numeric(timespan),dim =c(timespan ,num_
cars)) # array to store how long cars are waiting 

chargerplot = array(numeric(timespan),dim =c(timespan ,num_

chargers)) # array to store how long until chargers 
are free next 

queuestartplot = numeric(timespan) 

# SIMULATION START 

while (t < timespan) { # while simulation is running 
nextstart = ceiling(t/(24*60))*24*60 # calculate time 

of start of next day 
timetillnext = nextstart -  t # calculate time until 

start of next day 
if (timetillnext <= restlength*60-1 && timetillnext >0) 

{ # if less than restlength hours left (i.e. if 
chargers are inactive) 
isnight[t] = 1 # then we are in a period of 

inactivity 
} 

if (timetillnext == 0) { # if it is the start of a new 
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day 
if (charger_queue_length > 0) { # if there is a queue 

for (i in charger_queue_pointer :( charger_queue_

pointer+charger_queue_length -1)) { # for each 
car in the queue 
available_charger = select_charger(chargers ,t) 
if (available_charger != -1) { # if a charger is 

available 
chargers[available_charger ,1] = generate_car(

charger_queue[i,1],arrivals ,t) # occupy the 
free charger 

chargers[available_charger ,2] = charger_queue[i

,1] # note which car is occupying the 
charger 

wait_time = wait_time + t - charger_queue[i,2] 
# calculate wait time based on current time 
minus time car started charging 

charger_queue_pointer = charger_queue_pointer + 
1 # consider next spot in queue and later (

i.e. "remove" from queue) 
charger_queue_length = charger_queue_length -  1 

# reduce queue length by 1 
CHARGETIME[available_charger] = CHARGETIME[ 

available_charger] + chargers[available_

charger ,1] -  t # add to total time charger 
is in use 

} 
} 

} 
} 

for (i in 1:num_chargers) { # check if any cars are 
done charging 
if (chargers[i,1] != 0) { # among chargers that are 

occupied 
if (t >= chargers[i,1]){ # if any cars are done 

charging 
present_car_arrival = chargers[i,2] # focus on 

car that just finished charging 
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chargers[i,1] = 0 # make charger available 
arrivals[present_car_arrival ,4] = t + arrivals[

present_car_arrival ,2] # calculate time of 
next needed charge 

chargers[i,2] = 0 # clear out car in that charger 
slot 

arrival_number = arrivals[which.min(arrivals [,4])

,1] # move arrival index pointer to next car 
arrivals_time_pointer = arrivals[arrival_number

,4] # move arrival timestamp pointer to next 
car ’s arrival 

cars_served = cars_served + 1 

if (charger_queue_length > 0) { # if there is a 
queue 
first_car_in_queue = charger_queue[charger_

queue_pointer ,1] # note down name of first 
car in queue 

chargers[i,1] = generate_car(first_car_in_queue

,arrivals ,t) # occupy charger until specific 
time t, based on name of current car 

chargers[i,2] = first_car_in_queue # note which 
car is in this charger 

wait_time = wait_time + t -  charger_queue[
charger_queue_pointer ,2] # since a car 
begins charging from the queue , add to total 
wait time by taking difference of arrival 

time and current time (time waiting in line 
before charging) 

charger_queue_pointer = charger_queue_pointer + 
1 # consider next spot in queue and later (

i.e. "remove" from queue) 
charger_queue_length = charger_queue_length -  1 

# reduce queue length by 1 
CHARGETIME[i] = CHARGETIME[i] + chargers[i,1] -  

t # add to total time charger is in use 
} 

} 
} 
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} 

if (t >= arrivals_time_pointer) { # check if a car is 
arriving 
present_car_arrival = arrival_number # set current 

car being considered to the car that just arrived 
available_charger = select_charger(chargers ,t) # 

select a charger for the car 
if (available_charger != -1) { # if a charger is 

available 
chargers[available _charger ,1] = generate_car(

present_car_arrival ,arrivals ,t) # generate time 
of finishing charging (based on car that will 
begin charging), from start of clock , occupy 
available charger 

chargers[available _charger ,2] = present_car_arrival 
CHARGETIME[available _charger] = CHARGETIME[

available_charger] + chargers[available _charger] 
- t # add to total time charger is in use 

} 
if (available_charger == -1) { # if no chargers are 

available 
charger_queue[charger _queue_pointer+charger _queue_

length ,1] = present_car_arrival # add to end of 
queue the name of car that just arrived 

charger_queue[charger _queue_pointer+charger _queue_

length ,2] = t # note arrival time of car in 
queue 

charger_queue_length = charger_queue_length + 1 
} 
arrivals[present _car_arrival ,4] = timespan + 1 # 

while charging , remove this car from consideration 
for arrival for charging 

arrival_number = arrivals[which.min(arrivals [,4]) ,1] 
# initialize name of current car that has arrived 

arrivals_time_pointer = arrivals[arrival _number ,4] # 
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now that car has arrived and been sorted , move 
arrival timestamp pointer to next car ’s arrival 

} 
if (charger_queue_length > 0){ 

for (i in charger_queue_pointer :( charger _queue_

pointer+charger _queue_length -1)) { # for each car 
in the queue 
waitplot[t,charger _queue[i ,1]]=t-charger _queue[i,2] 

# plot time waited so far 
} 

} 
queuestartplot[t] = charger_queue_pointer 

for (i in 1:num_chargers) {

carplot[t,i] = chargers[i,2] # for all chargers note 
which car is charging 

if (chargers[i,2] == 0) { # if a charger isnt being 
used 
carplot[t,i] = -i # note that it isnt being used 

} 
chargerplot[t,i] = max(0,chargers[i,1] -t) 

} 
queueplot[t] = charger_queue_length 
t = t+1 # a minute passes 

} 

for (i in 1:num_chargers) { # once clock is done running , 
calculate % of time each charger spent in use 

CHARGETIME[i] = CHARGETIME[i]/timespan 
} 
wait_time = wait_time/cars_served 

print(CHARGETIME) 
print(cars_served) 
print(wait_time) 
print(max(waitplot)) 
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4.8 Results With Figures for Various Parameters 

Figure 21: Usage Pattern for 10 Chargers with 0 Hours of Inactivity Daily 

Percent of time charger was in use 

55.28% 
39.31% 
18.20% 
7.71% 
2.65% 
0.09% 
0.00% 
0.00% 
0.00% 
0.00% 

Total number of cars charged 404 
Average wait time per car (minutes) 0 
Maximum wait time (minutes) 0 

Table 4: Usage Data for 10 Chargers with 8 Hours of Inactivity Daily 
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Figure 22: Usage Pattern for 10 Chargers with 8 Hours of Inactivity Daily 

Percent of time charger was in use 

63.19% 
44.81% 
25.33% 
11.11% 
01.26% 
0.00% 
0.00% 
0.00% 
0.00% 
0.00% 

Total number of cars charged 405 
Average wait time per car (minutes) 22.6 
Maximum wait time (minutes) 476 

Table 5: Usage Data for 10 Chargers with 8 Hours of Inactivity Daily 
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Figure 23: Usage Pattern for 10 Chargers with 12 Hours of Inactivity Daily 

Percent of time charger was in use 

68.28% 
47.31% 
29.35% 
14.49% 
8.16% 
1.86% 
0.00% 
0.00% 
0.00% 
0.00% 

Total number of cars charged 400 
Average wait time per car (minutes) 65.55 
Maximum wait time (minutes) 706 

Table 6: Usage Data for 10 Chargers with 12 Hours of Inactivity Daily 
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Figure 24: Usage Pattern for 6 Chargers with 0 Hours of Inactivity Daily 

Percent of time charger was in use 

58.90% 
40.38% 
16.27% 
6.47% 
2.41% 
0.00% 

Total number of cars charged 407 
Average wait time per car (minutes) 0 
Maximum wait time (minutes) 0 

Table 7: Usage Data for 6 Chargers with 0 Hours of Inactivity Daily 
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Figure 25: Usage Pattern for 6 Chargers with 8 Hours of Inactivity Daily 

Percent of time charger was in use 

62.98% 
41.08% 
23.46% 
10.91% 
5.47% 
1.38% 

Total number of cars charged 406 
Average wait time per car (minutes) 26.8 
Maximum wait time (minutes) 467 

Table 8: Usage Data for 6 Chargers with 8 Hours of Inactivity Daily 
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Figure 26: Usage Pattern for 6 Chargers with 12 Hours of Inactivity Daily 

Percent of time charger was in use 

70.91% 
49.30% 
27.75% 
15.67% 
6.53% 
2.84% 

Total number of cars charged 400 
Average wait time per car (minutes) 51.78 
Maximum wait time (minutes) 718 

Table 9: Usage Data for 6 Chargers with 12 Hours of Inactivity Daily 
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