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Abstract. Here I discuss the use of everywhere continuous nowhere differentiable functions, as well as the 

proof of an example of such a function. First, I will explain why the existence of such functions is not 

intuitive, thus providing significance to the construction and explanation of these functions. Then, I will 

provide a specific detailed example along with the proof for why it meets the requirements not only of being 

continuous over the whole real line but also of not having a derivative at any real number. I will next analyze 

the proof and compare the function to another example of a continuous everywhere nowhere differentiable 

function in order to pull out how these functions sidestep intuition. 

1. Continuity and Differentiability: The Failure of Intuition 

In mathematics, not all concepts which seem intuitive at first are indeed correct. Fortunately, often 

having enough experience working in a field will expose a person to the field’s intricacies, and thus change 

the person’s intuition or at least make it weary of certain ideas. On the other hand, sometimes the counter-

examples to an idea can be rare or contrived, preventing the intuition from naturally adapting and leaving 

the person vulnerable to making a fatal assumption. Hence, with such concepts, going out of one’s way to 

remember a counter-example can keep one on one’s toes, and understanding it will give one a more nuanced 

understanding of the ideas involved. 

The relationship between the continuity and differentiability of a function contains an example of a 

deceptively intuitive link, though a number of intuitive ideas about the relationship apply. In one direction, 

the straight forward idea holds: if a function is differentiable at a point, then it must be continuous there 

as well. It is also not counter-intuitive why the opposite implication, that a derivatives exist wherever a 

function is continuous, does not hold. Often one of the first things a calculus student learns is that if a 

function exhibits a ‘sharp turn’ that the derivative does not exist, and the absolute value function provides 

an easily conceptualized example of this concept. At 0 the left handed derivative of the absolute value 

function equals -1, as the function in question is a simple linear function with a slope of -1, and similarly 

the right handed derivative equals 1. Because derivatives are based on limits, if the right handed derivative 

and the left handed derivative are not equal then the derivative as a whole cannot exist. Hence, though the 

absolute value function is continuous at 0, it is not differentiable there. Even without the formalism, one 

can see that at ’sharp turns’ the tangent line wants to have two distinct slopes: the slope as conceived from 
1 



the left and the slope as conceived from the right. The logical choice is to not choose between them and to 

declare the derivative non-existent, as is done formally. 

The deception occurs in that for continuous functions failure of differentiation seems rare. Given a 

continuous function, one typically assumes that the derivative exists at most points, though the derivative 

could exist nowhere. A couple of factors fuel the incorrect intuition. For one, a number of the functions 

that math students first learn to work with behave nicely with respect to the derivative over their domain. 

These include polynomial, rational, trigonometric, exponential, and logarithmic functions, which in fact are 

adifferentiable everywhere on their domain. Of the power functions, which have the form f(x) = x for some 

a ∈ R, only have points for which they are not differentiable for 0 < a < 1. This is because by the power rule 

of differentiation we will have f 0(x) = axa−1, if a = 0. If 6 a ≥ 1, the derivative continues to exist everywhere. 

If a < 0, it does not exist at 0, but that was not a part of the functions domain. For 0 < a < 1, then, f exists 

at everywhere and is differentiable everywhere but at 0. In the case that a = 0, we merely have f(x) = 1, 

which has derivative 0 everywhere. 

Even when these commonly used functions have continuous points without a derivative, they don’t typ-

ically have many. For example, the absolute value function and the power functions described above only 

lack a derivative at a continuous point at 0. One can think of methods such as forcing periodicity to increase 

the number of continuous non-differentiable points given that one such point exists, but even that will not 

force the number of non-differentiable points into the uncountable range if it were not there already. Hence 

these functions give the idea that non-differentiability is actually relatively rare for continuous functions. 

Moreover, both the ideas of a function’s continuity and differentiability relate, at least intuitively to ideas 

of smoothness. Before learning the formal definition of continuity, often students hear the idea that if one can 

draw a function without picking up one’s pencil then it is continuous. As stated, this intuitive test manifests 

a logically correct idea. If a function is not continuous at a point c then no mater how small of an interval 

one creates around c, there will always be points at least � away for some � > 0. Hence, when drawing the 

function one would need to move � away from f(c), for all intents and purposes, hence requiring the pencil 

to be picked up. Unfortunately, until students reach more formal classes such as Real Analysis, students 

typically learn how to find discontinuities in a few types of functions and that elsewhere these functions are 

continuous. These functions are the one’s noted above: polynomial, rational, trigonometric, exponential, 

and logarithmic functions. Hence, students do not confront early on functions that are nearly impossible to 

draw, let alone draw without picking up one’s pencil in terms of continuity. Yet, these functions can still 

have points at which they are continuous. the Thomae function, which provides an example of a function 

continuous on the irrationals, where it has non-zero values at all the rational numbers and is valued 0 at 

the irrationals 1. This would be quite impractical to draw because both the rationals and the irrationals are 
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dense in R [1]. Without exposure to such functions, continuity can become conflated with “easy to draw”, 

and even the example above is not continuous at countably many points. 

The derivative has even deeper connotations of smoothness. In order for a function to have a derivative at 

a point c, not only must the function be continuous at c and hence providing all of the connotations related 

to that, but one must be able to approximate the function linearly at that point. Because linear functions are 

particularly smooth, the existence of such an approximation hints that the original function must be smooth 

as well. In fact, the formula for the derivative provides a formal method for finding such an approximation 

by taking the limit of the slope between c and some other point as the point approaches c. When drawing 

a function without picking the pencil off the paper, one only has the option to choose which direction the 

pencil will go. At points where the function is differentiable one can move the pencil for a short period of 

time in the direction of the tangent line, and, if necessary, changing the direction as one goes to create the 

illusion of curvature. At a point where the derivative does not exist, one can quickly change the direction 

of the stroke, but the hand will still go for a short period of time in some direction. On that interval, 

the function will have a derivative, illustrating the difficulty of drawing and perhaps then conceptualizing a 

continuous function without a derivative. In fact, when the software Mathematica attempts to graphically 

display known examples of everywhere continuous nowhere differentiable equations such as the Weierstrass 

function or the example provided in Abbot’s textbook, Understanding Analysis, the functions appear to 

have derivatives at certain points. See figures 1 and 2 for examples. Hence, a function’s continuity can hide 

its non-differentiability. 

2. Abbot’s Example: The Function and Proof 

Abbot provides an example of an everywhere continuous nowhere differentiable equation, though it does 

not give all the details for the proof of nowhere differentiability, which itself is a bit complicated. However, 

because the idea of an everywhere continuous nowhere differentiable equation is so counter intuitive, we will 

provide a thorough proof here in order to highlight exactly where the intuition breaks down. 

To construct the function, we will first consider a simpler function h, where for −1 ≤ x ≤ 1, h(x) = |x| 

which is then made periodic by the condition that h(x + 2) = h(x). For all y ∈ R there exists a 2k ∈ 2Z, 

such that y + 2k ∈ [−1, 1] because the even integers are spaced 2 apart and have no lower or upper bounds 

in R. 
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Moreover, we have h(x + 2n) = h(x) for all n ∈ N. For n = 1 this is just h(x + 2) = h(x) as above. 

Assuming inductively that h(x + 2n) = h(x) for some n ∈ N. Then 

h(x + 2(n + 1)) = h(x + 2n + 2) 

= h(x + 2n) 

= h(x) 

as needed. 

Hence, for all even integers m, h(m) = 0 and for all odd integers n, h(n) = 1. In fact 1 bounds this 

function from above, while 0 bounds the function from below as between any two odd integers, the function 

will mimic the values between -1 and 1. These themselves are bounded by 0 and 1. Any point between two 

integers n and n+1, the function is modeled by a line connecting (n, h(n)) and (n+1, h(n+1)) The function 

will then be continuous over all of R. Therefore, for any x ∈ R\Z, the derivative of h at x exists and is 1 if 

the previous integer was even and -1 if the previous integer was odd. 

At any integer x ∈ Z, the right handed derivative and left handed derivative at x will correspond to 

the slopes of the lines on the right and left hand sides of x. The line to the right of x will have slope ±1 

depending on whether x is odd or even. However, in either case the integer immediately to the left of x will 

be even if x is odd and odd if x is even. So the slope to the left of x will have the opposite value as the slope 

to the right of x, but in either case the derivative will not exist. 

We will then show that g where 
∞X h(2ix) 

g(x) = 
2i 

i=0 

is continuous everywhere but differentiable nowhere. Because we will be discussing g at various stages of its 

construction, we will introduce additional notation. In particular, 

h(2ix)
fi(x) = 

2i 

nX 
gn(x) = fi(x) 

i=0 

Moreover, because we start the series of functions with f0, considering 0 as a part of the natural numbers 

will simplify notation without causing any difficulties. We will now note some useful properties of fi and 

1 gn. For example, fi(x) scales the h by both horizontally and vertically, so fi(x) equals 0 if 2ix is an even 2i 

1integer and equals if 2ix is an odd integer. These points are connected by lines, so fi is continuous every 2i 

(2i x)2i 

where. By the chain rule the derivative of f is fi 
0(x) = h

0 

= h0(2ix), which is just h0 scaled horizontally 2i � � 
1 z z+1by . Thus, if 2ix ∈ Z, h0(x) does not exist, and for x ∈ where z ∈ Z, if z is even f 0(x) = 1 and 2i 2i , 2i i 

if z is odd f 0(x) = −1.i 
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� �fi(2x)If fi(x) = 0 for some i ∈ N, then 2ix ∈ 2Z. fi+1(x) = , and 2 2ix will also be in 2Z, so2 

fi + 1(x) = 0. Therefore, given an n such that fn + 1(x) = 0, we have that g(x) = gn(x). Using this we 

1can say that because f1(0) = h(2(0)) = h(2) = 0, g(0) = g0(0) = h(0) = 0. Moreover, for x ∈ [− 1 , ] , 2n 2n 

fn(x) = |x|. Also, g will have a period of 2 just as h did, because for all i ∈ N, fi(x + 2) = fi(x). f0 is 

just h for which this is assumed. Assuming inductively that fi(x + 2) = f(x) for some i ∈ N, we know that 

fi(2x)fi+1(x) = . Therefore,2 

fi(2x + 4) 
fi+1(x + 2) = 

2 
fi(2x + 2) 

= 
2 

fi(2x) 
= 

2 

= fi+1(x) 

Hence, fi(x + 2) = f(x) holds for all i ∈ N by induction. Therefore, 

∞X 
g(x + 2) = fi(x + 2) 

i=0 

∞X 
= fi(x) 

i=0 

= g(x) 

In order to show that g is continuous, one only needs to apply the M−test. h(2ix) is bounded between P∞1 10 and 1 for all i ∈ N, so fi will be bounded between 0 and for all i ∈ N. is a geometric series 2i i=0 2i P∞1with initial value 1 and a ratio of . Therefore it converges, so the series fi(x) converges uniformly. 2 i=0 

Because all fi are continuous over all of R we then have that g is continuous over all of R [1]. 

The more difficult claim is that g is differentiable nowhere. To do this one does not prove that g is not 

differentiable at all x ∈ R all at once, but instead breaks the x into cases which build on each other. 

1First, we start simple and prove that g is not differentiable at 0. Consider the sequence xm = .2m 

Because lim xm = 0, if g is to be differentiable at 0, 

g(xm) − g(0) g(xm)
lim = lim 

xm − 0 xm 

g(2−m)
= lim 

2−m 

= lim 2m g(2−m) 

= L 
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� � 
1for some L ∈ R. However, 2m+1 ∈ 2Z, so fm+1(xm) = 0 and thus g(xm) = gm(xm). Therefore, 2m 

2m g(2−m) = 2m gm(2−m) 

mX 
= 2m fi(2

−m) 
i=0 

mX 
2−m= 2m 

i=0 

mX 
= 1 

i=0 

= m + 1 

)−g(0), so lim g(xm = lim m + 1, which diverges. Hence, g is not differentiable at 0. Because g has a period xm−0 

of 2, this then means that g is not differentiable at any point in 2Z. 
0Next, we will show that g is not differentiable at 1. First note that for x ∈ [ 1 , 1), g1(x) = h0(x)+ h0(2x) = 2 

3 01 − 1 = 0 and that for x ∈ (1, ], g1(x) = h0(x) + h0(2x) = −1 + 1 = 0. Therefore, because 2 

g1(.5) = h(.5) + .5h(1) 

= .5 + .5 

= 1 

g1(1) = h(1) + .5h(2) 

= 1 + 0 

= 1 

g1(1.5) = h(1.5) + .5h(3) 

= .5 + .5 

= 1 

3for all x[ 1 , ] , g1(x) = 1. Furthermore, since f1(1) = 0, we know that g(1) = f0(1) = 1 2 2 
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1Now consider the sequence xm = 1 − . First, 2m+2xm = 2m+2 − 2 ∈ 2Z, so fm+2(xm) = 0, and thus 2m+1 

g(xm) = gm+1(xm). Now, lim xm = 1, so if the derivative of g exists at 1 it will equal, 

1 g(xm) − g(1) g(1 − 2m+1 ) − 1 
lim = lim 

−2−m−1xm − 1 
m+1X 

= lim −2m+1 fi(1 − 2−m−1) − 1 
i=0 

m+1X 
= lim −2m+1 fi(1 − 2−m−1) 

i=2 

m+1X h(2i − 2i−m−1)
= lim −2m+1 

2i 
i=2 

m+1X h(−2i−m−1)
= lim −2m+1 

2i 
i=2 

m+1X 
2−m−1= lim −2m+1 

i=2 

m+1X 
= lim −1 

i=2 

= lim −m 

However, this diverges, so g is not differentiable at 1. Combining this with our earlier conclusion that g is 

not differentiable at 0 gives that g is not differentiable at any integer. 

zWe will now look at points that have the form x = 
2N for N ∈ N and z ∈ Z. For simplicity, we assume 

that this fraction is reduced. If x is an integer, we already know that g is not differentiable there. Otherwise, 

zwe have that z is odd and N ≥ 1. Hence, for all n ≤ N01, 2n 
2N ∈/ 2Z, so fn is differentiable at x and thus 

gN−1 is differentiable at x. g will then be differentiable at x if g − gN−1 is differentiable at x. Note then 

that, 

∞X 
(g − gN−1)(x) = fi(x) 

i=N 

∞X h(2ix) 
= 

2i 
i=N 

∞X h(2i+N x) 
= 

2i+N 
i=0 

g(2N x) 
= 

2N 

Dividing by 2N does not affect differentiability, so in order for g to be differentiable at x, g must be differ-

zentiable at 2N x = 2N = z ∈ Z, which we already established was not differentiable. 
2N 
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Finally, we we look at points x ∈ R that do not have this form. For each N ∈ N, there will exist a zN ∈ Z 

zN zN +1 zmsuch that < x < . As such we can create two sequences (xm) and (ym) out of these where xm = 
2N 2N 2m 

and ym = zm+1 , where lim xm = x = lim ym. In fact, these describe the end points of the line on which x2m 

sits in fm, and that line will be contained in a line on fn for all n ≤ m. Therefore, the portion between xm 

zand ym on gm will be linear. Because x does not have the form 
2N for some N ∈ N, for no n ∈ N will 2nx 

be an integer, so fn will be differentiable at x for all n ∈ N. Hence, gn will be differentiable at x for some 

all n ∈ N. Moreover, 

m+1 mXX 
����� 

����� 0 0 
m+1(x) − g f 0 f 0 i (x) − i (x)|g (x)| = m

i=0 i=0 

= |f 0 m+1(x)| 

= 1 

Hence, the sequence g0 (x) is not Cauchy and will not converge. m

We will now compare g0 (x), which will be the slope of the line on which x sits in gm to the values m

g(xm)−g(x) g(ym)−g(x)and . First we know that 2m+1xm = 2z ∈ 2Z and 2m+1ym = 2z + 2 ∈ 2Z, so xm−x ym−x 

fm+1(xm) = fm+1(ym) = 0. Hence, g(xm) = gm(xm) and g(ym) = gm(ym). Furthermore, because x is 

differentiable at every fm it is non-zero all those values, so g(x) = gm(x)+ am for some am > 0,since fm will 

always be non-negative. Because gm(x) is linear between xm and ym, the slope of the line between x and 

these two points will be g0 (x). From this we have that m

g(xm) − g(x) gm(xm) − (gm(x) + am) 
= 

xm − x xm − x 

gm(xm) − gm(x) am 
= − 

xm − x xm − x 
am0 = g (x) −m xm − x 

> g0 (x)m

and 

g(ym) − g(x) gm(ym) − (gm(x) + am) 
= 

ym − x ym − x 

gm(ym) − gm(x) am 
= − 

ym − x ym − x 
am0 = g (x) −m ym − x 

< g0 (x)m
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which gives us that 

g(ym) − g(x) g(xm) − g(x)
< g0 (x) <mym − x xm − x 

)−g(x) )−g(x)If g0(x) is to exist then lim g(ym = g0(x) = lim g(xm . The squeeze theorem would then tell us that ym−x xm−x 

g (x) converges to g0(x), but we have already established that this is impossible, providing a contradiction. m

As this was the last case of points for which we had to determine the differentiability, we have now proven 

that g is differentiable nowhere. 

3. Analysis and Comparison 

Now that we have proven that our function g is continuous everywhere but differentiable nowhere, we 

should analyze the proof to better understand how it works and how it sidestepped our intuition. We can 

also see how those ideas can appear in other everywhere continuous nowhere differentiable equations such 

as the Weierstrass functions, the first well known example of such a function, though not the first example 

discovered. The Weierstrass functions are a family of functions which have the form 

∞X 
i g(x) = a cos(bi x) 

i=0 

where a and b satisfy certain properties. These were originally a < 1 and ab > 1 + 3π and b being an odd 2 

integer greater than 1, though later the restrictions were loosened to a < 1, b > 1, and ab ≤ 1 [2]. One such 

function is shown in figure 2. 

One should note that we avoided making the assumption that because the derivatives do not exist at the 

3integers for any fi, they do not exist at their sum. g1 on [ 1 , ] provides a counter example because over 2 2 

this interval g1 equals a constant, 1, so the derivative of g1 exists at 1 and is 0. However, both f0 and f1 do 

not have derivatives at 1. One can also easily imagine an infinite sequence of functions hn valued as 0 for 

x < 0 and as e−ix for x > 0. No hn has a derivative at 0 because the left handed derivative is 0 and the 

right handed derivative is e 6−n = 0. The limit function here is simply the 0 function, which has a derivative 

at 0, namely 0. Hence the derivative of a limit function is not necessarily the limit of the derivatives. The 

Weierstrass functions therefore provide a good example where the individual functions being added together 

are differentiable everywhere but the end result is differentiable nowhere. 

Another thing we should note here is that the function appears smooth at points because the action that 

causes the breaks in the derivatives occur on the small scales, which our brain can find hard to picture. 

Figure 3 helps illustrate this. Adding fi to a function changes the derivative of a function just as much for 

large i as for small i in that in any case the derivative’s change will by 1 or -1 if the derivative of fi exists at 

that point. However, figures 3 and 4 illustrate that for large i, the human mind will not notice the change 

nearly as much because they occur over such miniscule scales. In fact figure 4 shows that adding f7 to a 
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function k, such as sin(3x), is barely distinguishable from k, while adding f3 produces clear changes. Hence, 

while one typically thinks that a functions derivative is clearly understandable from picture and that having 

an smooth graph makes a function likely to be differentiable, this is not necessarily the case. 

This proof also demonstrates a way that a function can fail to have a derivative at a point without showing 

a sharp turn. For example, the slopes of the secant lines could tend towards infinity as we showed at the 

points 0 and 1. Now, our proof does not show that this is what happens at 0 and 1; we only looked at 

one sequence of points heading towards these values and others could act difierently. The function f where 

1f(x) = x provides an example of this occurring at 0. f , here, is the inverse of the function that cubes x,3 

which by the power rule has a slope of 0 at 0. Therefore, the tangent line of f would have to be vertical, 

showing that the secant lines would head towards infinity as the second point chosen approached 0. Another 

thing to note here is that the example highlights the fractal like properties of continuous everywhere and 

differentiable nowhere equations. The comparison comes naturally because while they are continuous they 

can never become simple enough to be approximated by a tangent line. However, this example brings the 

self-similarity principle to the foreground because at each step we add a scaled down copy of our original 

equation. Interestingly a similar thing occurs in the Weierstrass functions, though the scaling may not be 

exactly the same vertically and horizontally due to fewer restrictions on a and b. 

4. Conclusions 

While the existence of derivatives can provide a lot of useful information, one should not assume that 

a function will be differentiable at most or even any points even if the function is continuous. Fortu-

nately, while the function given by Abbott and the Weierstrass function seem slightly construed for the 

task, they are formed using simple basic building blocks, such as the absolute value function and the cosine 

function, and thus are not that difficult to conceive. These functions make use of fractal like designs to 

keep complexity at all scales and thus prevent linear approximation at any scale and thus the existence 

of derivatives. At the same time, proving that such functions are actually not differentiable anywhere 

can require a careful mind to split apart what exactly prevents the derivative from existing at each point. 
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