

Robert Grizzard University of Wisconsin

"Conjugate solutions to linear equations"

Monday, October 17, 2016

Talk at 4:00-H109 Tea at 3:30 - KINSC Math Lounge, H208

Abstract:

For which positive integers a, b, c (with no common factors) does there exist a solution to the equation $a x+b y+c z=0$, where x, y, and z are conjugate algebraic numbers (i.e. roots of the same irreducible polynomial)? In the 80's Smyth showed that this problem is equivalent to a very simple question about integer solutions to the equation, and conjectured that there is always a solution as long as a, b, and c are pairwise relatively prime, and could be the side lengths of a triangle -that is, a is at most $\mathrm{b}+\mathrm{c}$, b is at most $\mathrm{a}+\mathrm{c}$, etc. This conjecture remains open. We'll talk about why the conjecture seems difficult, both theoretically and computationally, and show that a stronger version can't be true. This contains joint work in progress with Jennifer Berg (Rice).

