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Abstract Methods

Our research looked at tunneling through a finite potential square barrier We began by finding the probability of detection for a photon incident upon a glass plate. We then
through the lens of instantons in Euclidean spacetime. We used the solved Schrodinger’s equation for a square potential to find transmission amplitudes for energy

greater than and less than the potential. Our goal then was to use the method outlined in Sidney
Coleman’s paper The Uses of Instantons to solve for the transmission amplitude in a square

problem of a photon incident upon a sheet of glass as a model to connect
Schrodinger’s interpretation of tunneling to Sydney Coleman’s instanton

iInterpretation. In doing this, we looked at the Fourier transformation in barrier.
order to change Coleman’s fixed time propagator to a fixed energy Finally, we looked at the double well potential. We used the WKB formula to find a solution to the
propagator. Finally, we attempted to connect the Wentzel-Kramers- wave equation for a double harmonic oscillator with equation
Brillouin (WKB) approximation for a simple harmonic oscillator? to .~ , ,
\Coleman’s instanton approach for the standard double well potential. ) (fig. 2). V(x) = < gmw (x+a)", x <0
émwz(x —a)4, x>0

| N tro d U Ct| on We then compared this result to the result Coleman found for the double well potential (fig. 3).
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where V, is an arbitrary potential and +x; # 0. However, because of the

improbability of a perfect square barrier we approximated the barrier as _ _
smooth in our equations (fig. 1). D| SCUsSSIon

We wished to interpret tunneling through this barrier within the scope of

instantons. An instanton is a mathematical expression of quantum tunneling In Coleman's paper he looked at a double potential well (fig. 3) whereas we were looking at a
that looks at the action in Euclidian time. Tunneling occurs when a particle square potential barrier. This caused three major differences in our computations:

passes through a barrier that it would not pass through in classical 1. The double potential well allows the particle to sit at the minima of the potential for any amount
mechanics due to insufficient energy. The transmission amplitude gives the of time whereas the particle incident upon the square barrier can never be at rest. This meant that,
probability that the particle will pass through the barrier in quantum while Coleman used a fixed time to calculate his answer, we would have to look at fixed energy.
mechanics.

2. Because we were looking from directly before through directly after the tunneling occurred, we
The Wentzel-Kramers-Brillouin (WKB) approximation was utilized to further were working almost solely in Euclidian time.

examine Coleman’s instanton interpretation of tunneling through the double 3 Refiection and transmission amplitudes cannot be properly found because the barrier is vertical.

potential well. This approximation is valid everywhere except the turning  yye would need to find a way to calculate them while keeping the integrity of the square potential.

points. The area of the turning point is then approximated as a straight line This was done by approximating the square barrier as smooth (fig. 1). This was crucial because

and matched with the original equation using Airy functions. Coleman’s work relied on the second derivative of the potential, which is not well-defined for a

square barrier.
We believe the first point can be resolved through use of the Fourier transformation.

. We believe the inability to create meaningful parallels between Coleman and the WKB formula
Fig 1. Exaggerated smooth

approximation of the square potential was because

barrier. "x,” and “x,” are the turnin _ . . . .

boints. ! 1 ? J 1.The WKB formula approximates the turning points (energy equal to potential) which can lead
X

to inexact answers.

2.\We were looking at a double harmonic oscillator which meant the derivative and second
derivative were undefined at x = 0. The double potential well is smooth with well-defined

CO NC I US | ons derivatives at every point.

| Although we were unable to connect Coleman’s work on instantons in the double well to our finding for the finite square barrier, we were able to gain a better understanding of
the mathematical interpretations of tunneling. With further investigation into the methods Coleman used we believe we could recreate both the exact answer we found from

nics

In our example of a photon incident upon a glass plate, it went through three states. The photon

was in its first state directly after being fired before it has encountered the glass plate. It then
passed through the upper side of the plate and was inside the glass. When passing through the
glass, the photon goes through a phase change and thus has a different wavelength in this
second state. Once inside the glass, the photon may bounce between the upper and lower
bounds of the glass any amount of times before escaping the lower bound and being in the third
and final state below the glass. There is no phase change when the photon escapes the glass.

Z, = toikdifpikd; Zn: r2me(2m+1)ik'd
m=0
gives the probability amplitude z, for the photon in which t is the transmission probability amplitude
when incident upon the glass, t is the transmission amplitude probability when exiting the glass, k
is the wave number of the photon outside the glass, k’is the wave number of the photon inside the
glass, d, is the distance the photon travels before it becomes incident upon the glass, d, is the
distance from exiting the glass to the detector, d is the thickness of the glass, r is the probability

amplitude for reflection, and n is the number of times the photon reflects inside the glass.

In parallel to the optics problem , when a small particle is incident upon a potential barrier, such as
the square barrier we were studying, it has a state before it reaches the barrier, it has a state after
reaching the barrier where it experiences a phase change and can propagate back and forth any
amount of times, and it has a state after exiting the barrier. Because of the symmetry between the
two situations, it was easy to adapt the above example to fit a particle incident upon a square
barrier when the particle had enough energy to pass. Thus, we used the time independent

Schrodinger Equation, ¥ (x) = —%;—; + V(x), to solve for the transmission amplitude of energy

incident upon a square barrier in the allowed region (energy greater than the potential. This
yielded

(k2 — k2)°

T=|1+
4k2 k2

sin?(kya)

which is equal to the complex conjugate of z,. Thus, the probability of detection for the photon and
the transmission amplitude for the square barrier in the allowed region were equal. We now had
an accurate classical mechanics comparison for energy incident upon a square barrier in this
region.

We assumed that we would be able to use the optics example to better understand an instanton
approach to tunneling through a square barrier in the forbidden (energy less than potential) region
because the optics problem looks at the whole action instead of just one moment, and instantons
are a way of looking at tunneling by looking at the whole action in Euclidian time. We used
Coleman’s paper as the main source for our efforts to construct the instanton interpretation for
tunneling. However, we were unable to complete this portion of the research.

We were unable to create meaningful parallels between our WKB results and Coleman’s
interpretation of the double well.
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