Philadelphia Area Number Theory Seminar

Charles Burnette

Drexel University

Periods of Iterated Rational Functions

Abstract: Choose a random polynomial f uniformly from among the $q^d(q-1)$ polynomials of degree d in $\mathbb{F}_q[x]$. Let c_k be the number of cycles of length k in the directed graph on \mathbb{F}_q with edges $\{(v, f(v))\}_{v \in \mathbb{F}_q}$. In this talk, I will show that if $d = d(q) \to \infty$ as $q \to \infty$, then the numbers c_1, c_2, \ldots, c_b are asymptotically independent Poisson(1/k), just as in the classical theory of random mappings. Furthermore, if $\omega = \omega(q) \nearrow \infty$ slowly, and $d = d(q) > \exp\left(\frac{\log q}{\omega^{1/3}}\right)$, then for all sufficiently large prime powers q,

$$E(\mathbb{T}) > q^{\frac{1}{\omega}}.$$

A similar bound holds when random polynomials are replaced by random rational functions.

Thursday, April 7, 2016 2:40–4:00PM

Bryn Mawr College Department of Mathematics Park Science Center **328** Tea and refreshments at 2:20PM in Park 355