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1. Emily Stark: The Geometry of finitely generated groups 

Abstract. In the 1980s Gromov proposed studying finitely generated groups as metric 
spaces. This perspective is powerful as groups that have similar large-scale geometry often 
share common algebraic features. In this introductory talk, we will present examples of 
this phenomena as well as tools to study the geometry of a finitely generated group. 

Throughout this talk, we will assume that G is a finitely generated group. Suppose that 
G has a finite generating set S. 

Definition 1.1. The Cayley graph for the group G, denoted Cay(G, S) which has vertex 
set {g : g ∈ G}, and two vertices are contained in an edge if they differ by a generator on 
the base {{g, gs} : g ∈ G, s ∈ S}. By the way the edges are defined, the group acts on the 
graph. 

The Cayley graph Cay(G, S) is quasi-isometric to Cay(G, S0) as long as S and S0 are finite 
sets. The point is that the large-scale geometry of the group doesn’t depend on a choice 
of generating set. 

Example 1.2. Let G = S1, S2, S3, S4, S5 : S2 = 1, [Si, Si+1] = 1, i (mod 5) . We cani 
draw the Cayley graph as: 

Figure 1. Caption 

We have vertices for each generator, as well as vertices for products of generators, and so 
on. Every vertex will have valence 5 because there are five generators, and every vertex 
will be contained in four-cycles due to the relations. 
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The group G acts on the hyperbolic plane H2 by isometries, where every element of the 
group corresponds to reflection about a geodesic line in the hyperbolic plane. 

The dual graph here is precisely the Cayley graph. 

So we say that Cay(G, S) is quasi-isometric to H2 because H2 is a model geometry for 
1G. By definition a model geometry for a group G is a proper , geodesic2 metric space on 

which G acts geometrically. Here a geometric action means properly3 and cocompactly4 

by isometries. 

Definition 1.3. We say metric spaces X and Y are quasi-isometric if there exists a map 
f : X → Y and constants k ≥ 1 and C ≥ 0 so that 

(1) For all x, x0 ∈ X, we have that 

1 
d(x, x 0) − C ≤ d(f(x), f(x 0)) ≤ k · d(x, x 0) + C 

k 
This map distorts distances most by multiplicative and additive factors. 

(2) (The map is almost onto): Everything in Y is within C of the image of f : 

NeighC (f(X)) = Y. 

Example 1.4. The inclusion Z ,−→ R is a quasi-isometry. 

Example 1.5. Any finite group is quasi-isometric to the trivial group, since its Cayley 
graph is compact. 

Quasi-isometry invariants 
• The number of ends of X, de-
fined to be the limit as R → ∞ of 
the number of components in X − 
BR(p). 
• δ-hyperbolicity (Gromov): Let 
δ ≥ 0. A metric space X is δ-
hyperbolic if, for every geodesic tri-
angle in X, the union of the δ-
neighborhoods of any two sides con-
tains the third. 

Algebraic consequences 
• A group G has two ends if and only 
if G contains Z as a finite index. 

• If G is δ-hyperbolic and not zero 
or two-ended, then G contains a free 
group Fn of rank n ≥ 2 as a sub-
group. 

1A metric space X is proper if closed balls are compact 
2A metric space X is geodesic if any two points are connected by a geodesic segment. A non-example 

would be R2 − 0. Here geodesic is induced by the path metric — meaning any path achieving the infimum 
of the length of paths between two points. 
3A group action of G on a metric space X is proper if for all points p ∈ X and constants r ≥ 0, the 

cardinality |{g ∈ G : g · B(r, p) ∩ B(r, p) 6= ∅}| < ∞. 
4A group action of G on a metric space X is cocompact if there is a compact subset K ⊆ X so that the 

G-translates of K equal the entire space: G · K = X. 
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Figure 2. 

We have zero-hyperbolicity exactly if and only if X is a tree. 

Figure 3. 

Within the family of δ-hyperbolic groups, the visual boundary of G is a quasi-isometry 
invariant. Precisely, the visual boundary is defined by 

δ∞X := {equivalence classes of geodesic rays in X} , 

where two geodesic rays γ, γ0 : [0, ∞) → X are equivalent if d (γ(t), γ0(t)) ≤ D for some 
D ≥ 0 for all t. This comes equipped with a natural topology, where given any z ∈ δ∞X, 
nearby geodesics to γ are representative geodesics passing through an open ball around z. 
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Figure 4. 

For example: 

• δ∞ (Hn) ∼= Sn−1 . 
• The visual boundary of a tree Tn for n ≥ 3 is homeomorphic to the Cantor set. 
• The visual boundary of a Bourdon Fuschian building5 

Figure 5. 

is homeomorphic to the Menger curve.6 

5These are 2-complexes where every cell is a regular right-angled hyperbolic p-gon, where all the sides 
are the same length. 

6Recall the Menger curve is the fractal obtained by starting with [0, 1]3 , then from every opposite faces 
we remove a square prism, then iterate this on each remaining cube. Cross-sections of this curve give the 
square Sierpinski carpet. 
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Figure 6. 

Theorem 1.6. (Tukia, Gabai, Casson–Jungreis) If G is δ-hyperbolic, and δ∞ (Cay(G)) ∼= 
S17 , then G contains the fundamental group of a surface of genus at least two, π1 (Σg), as 
a finite index subgroup. 

Remark 1.7. A group is quasi-isometric to any of its finite-index subgroups. 

Conjecture 1.8. (Cannon’s Conjecture) If δ∞(G) ∼= S2 , then some finite index subgroup 
Γ ⊆ G acts on H3 geometrically has boundary the 2-sphere. 

Definition 1.9. We say that groups G and G0 are virtually isomorphic if there exist finite 
normal subgroups K E G and K 0 E G0 so that G/K and G0/K 0 contain isomorphic finite-
index subgroups. Groups are commensurable if G and G0 contain isomorphic finite-index 
subgroups. 

If G and G0 are virtually isomorphic, then they are quasi-isometric. The rigidity problem 
asks about the converse — when are quasi-isometric groups virtually isomorphic? 

This is false in general (closed hyperbolic 3-manifold groups). 

2. Emmy Murphy: Constructions of Liouville domains & etc. 

Abstract. We’ll discuss the basics of Liouville manifolds and Weinstein handles. This 
is a method by which new symplectic manifolds can be constructed from old, using 
isotropic/Legendrian submanifolds of contact manifolds. We’ll also discuss some of the 
ways this interacts with contact flexibility, namely loose Legendrians and overtwisted con-
tact structures. These are tools by which, using some semi-local hypotheses, the geometric 
structures in question can be completely understood in terms of smooth topology. 

Definition 2.1. A symplectic structure on a manifold is a 2-form ω ∈ Ω2(M) such that 

7The visual boundary of any Cayley graph of G is well-defined, since it is a quasi-isometry invariant. 
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• It is closed (dω = 0) 
• The map ω : TM → T ∗M is an isomorphism at each point. 

It looks like the imaginary part of a Hermitian form: given some Hermitian metric (·, ·) = 
h·, ·i + iω (·, ·). 

Example 2.2. There are two main classes of examples that we will talk about. 

(1) Consider any X ⊆ CN , embedded holomorphically in complex space (e.g. take aPNregular vanishing locus of polynomials). Then ω = dxj ∧ dyj .i=1 

Figure 7. 

(2) If Q is any smooth manifold, then T ∗Q is symplectic, with 2-form given by X 
ω = dpj ∧ dqj , 

where (qj ) are coordinates on Q and (pj ) are the dual coordinates in the fiber.8 

This last example is particularly nice, in that it recovers all Hamiltonian mechanics on the 
manifold Q (i.e. this 2-form is what allows you to do Hamiltonian mechanics here). 

What we want to talk about are specific types of symplectic manifolds called Liouville 
domains/manifolds. People often study compact closed symplectic manifolds, which we 
don’t want to do. 

Definition 2.3. A symplectic structure is exact if ω = dλ for some λ ∈ Ω1(M). 

8“pj = dqj ” as a fiber coordinate on T ∗ Q. More explicitly, dqj ∈ Ω1Q, and using the projection 
π : T ∗ Q → Q, we can get a pullback π ∗ (dqj ) ∈ Ω1 (T ∗ Q). 
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This gives you something for free — since ω : TM → T ∗M was an isomorphism, the data 
of λ defines Zλ (a vector field) by the property that ω(Zλ, ·) = λ. 

Definition 2.4. A Liouville domain is an exact symplectic manifold, which is compact 
with boundary, so that Zλ is transverse to the boundary ∂M . 9 

Figure 8. 

Figure 9. 

9If ∂M is connected, where Zλ meets the boundary needs to be “outwardly transverse.” If φt : M → M 
is the flow of Zλ, then following from the equation ω(Zλ, ·) = λ, we get that φ ∗ 

t ω = e tω is expanding the 
structure. Also if we take the top-dimensional wedge power of ω, being ωn ∈ Ω2n(M), we have that this 
is a volume form. Thus the flow is exponentially expanding the volume, so we couldn’t have a manifold 
where we are flowing into it and expanding the volume. 
The outward transversality is called convex Liouville, while inward transversality is called concave 

Liouville. 
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Remark 2.5. Both of these examples from before fall under this definition. P P 10 cExample 2.6. If M = T ∗Q, we can take λ = pj dqj , and Zλ = pj ∂pj . If M = 

{||p|| ≤ 1} ⊆ T ∗Q, then Mc is Liouville. 

Example 2.7. If X ⊆ CN is holomorphically and properly embedded11 then X ∩ B2N (R) 
is Liouville, where R is some large radius. 

Figure 10. 

P P1 1 12This is because we could take λ = xj dyj − yj dxj , and Zλ = xj ∂xj + yj ∂yj .2 2 

This definition is broad enough so that it incorporates a lot of holomorphic geometry, as 
well as a lot of Hamiltonian mechanics. 

Question: Why do we require this “transverse to the boundary” condition? 

Pseudo–answer: We need something at the boundary to make the geometry interesting. 
We would have too much freedom without this, and we would have no control over how 
the geometry is acting near the boundary. 

Aside: If we take C2 − 0, (or Ck − 0 for k ≥ 2) then there does not exist a biholomorphism 
f : C2 − 0 → C2 − 0 interchanging 0 and ∞. This isn’t true for C − 0 obviously — roughly 
due to the fact that S1 is flat, while higher spheres are not. 

10This Zλ is the fiberwise radial vector field in each fiber. 
11Think of affine varieties. 
12Really we have to take the orthogonal projection onto X of this vector field in order to have transver-

sality at the boundary. 
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Figure 11. 

We want to talk about how to construct Liouville domains. Given a smooth manifold with 
boundary ∂M , does there exist a Liouville structure on it? Give me tools to build stuff. 

Weird example: There exists M4 Liouville with topology given by the unit sphere bundle 
cross an interval S (T ∗Σg≥2)×[0, 1], union a 1-handle if you want connected boundary. This 
is not a Stein manifold, since the sphere bundle is a 3-manifold and has nontrivial H3 . 

Figure 12. 

Handle attachments In smooth topology, given some manifold M (compact with bound-
ary), and given some (k − 1)-sphere Sk−1 ⊆ ∂M with trivial normal bundle, then we can 
define a new manifold Mf := M ∪Sk−1×Dn−k (Dk × Dn−k), where Sk−1 ⊆ Dn−k ⊆ ∂M and� � 

Dn × Dn−kalso a subset of ∂ . For example if we wanted to build a torus, we could take 
a bowl and attach two handles onto it — we see that this is homeomorphic to a torus with 
a disk chopped out (exercise: visualize this). If we union on a copy of D2 × D0 , we get T 2 . 
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Figure 13. 

A classical result is that all smooth manifolds can be built this way. 

Question: Is there an analogue for Liouville domains? 

Answer: Yes! This is what is called Weinstein handle attachment. 

The subtlety comes from gluing along a submanifold in the boundary. We need to under-
stand what conditions on the submanifold in ∂M are we going to need in order to glue the 
geometry consistently. This gets into something called contact geometry. 

Following from the property that Zλ is transverse to ∂M , this implies that 

λ ∧ dλ ∧ dλ ∧ · · · ∧ dλ| {z } 
n−1 

P n−1is a volume form in Ω2n−1(∂M). The form λ is locally given by λ = dz − j=1 yjdxj . It 

turns out then that as long as the submanifold Λ = Sk−1 ⊆ ∂M satisfies that λ|Λ = 0, 
then there is a well-defined Liouville handle attachment. 

First, we see that any S0 works, so we can attach 1-handles. In general, λ|Sk−1 = 0 implies 
1that k − 1 ≤ n − 1 = dim ∂M . Thus we can only attach handles with ≤ -dimensional2 

homotopy type.13 P n−1Drawing in the xz-plane, we can always solve the equation λ = dz − j=1 yj dxj by letting 
∂z y = Let S1 ⊆ R3 ⊆ S3 be the following: ∂x . 

13This vanishing happens if and only if Sk−1 × (−ε, ε) (which is thickened using the flow) is La-
grangian/isotropic, meaning that ω| = 0. Sk−1×(−ε,ε) 
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Figure 14. 

If we take B4 union a 2-handle, this gives the manifold D(T ∗S2), which is also equal to� 
2 2 2the affine quadric x + y + z = 1 ∩ B6(R) ⊆ C3 . 

As another example, consider the following: 

Figure 15. 

Taking B4 union a 2-handle, we are getting {xyz + x + z + 1 = 0}. 
Finally, consider two spheres with 1-handles drawn: 

Figure 16. 

Again after gluing, this is equal to C2 − {xy = 1}. 
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3. Emily Stark: Graphical discrete groups & rigidity 

Abstract. Rigidity theorems prove that a group’s geometry determines its algebra, typ-
ically up to virtual isomorphism. Motivated by interest in rigidity, we study the family of 
graphically discrete groups. In this talk, we will present rigidity consequences for groups 
in this family. We will present classic examples as well as new results that imply this 
property is not a quasi-isometry invariant. This is joint work with Alex Margolis, Sam 
Shepherd, and Daniel Woodhouse. 

We will give two equivalent definitions: from lattice embeddings, and from groups acting 
on graphs. 

Definition 3.1. A finitely generated group Γ is graphically discrete if whenever Γ/K is 
isomorphic to a uniform lattice in a totally disconnected locally compact second countable 
toplogical group G, where K E Γ is finite, then G is compact-by-discrete.14 

Note 3.2. If Γ acts geometrically on X, where X is a locally finite graph, then Γ modulo 
the kernel of the action embeds into the isometry group Isom(X) as a uniform lattice, and 
Isom(X) is a totally disconnected locally compact group. This gives a concrete example of 
the first half of the previous definition. 

Then Isom(X) is discrete if no nontrivial sequence converges to the identity. For example 
the isometry group of the integer lattice Z2 is discrete, but the isometry group of a tree is 
not. 

Definition 3.3. Let X be a graph. An Aut(X)-imprimitivity system on X is an equiva-
lence relation on the vertex set of X that is invariant under Aut(X). That is, v ∼ w if and 
only if h · v ∼ h · w for all h ∈ Aut(X). Equivalence classes are called blocks. 

Example 3.4. Let X be the integer tiling of the line with two leaves attached to every 
vertex. Note that the isometry group Isom(X) is not discrete, since we can flip the leaves 
at each point and get a non-trivial sequence converging to the identity. We can build a 
quotient graph X/ ∼, where the vertex set is in bijection with equivalence classes, and 
two equivalence classes [v] and [w] share an edge in the quotient graph if there are vertices 
v0 ∈ [v] and w0 ∈ [w] that are an edge in the original graph. The quotient X/ ∼ here would 
just be a line with vertices at each integer, where Aut(X) acts on it discretely15 . 

Figure 17. 

14G surjects onto a discrete group, and the kernel is compact 
15The image of Aut(X) in the automorphism group of the quotient graph is discrete. 
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Definition 3.5. A finitely generated group Γ is graphically discrete if, whenever Γ acts 
geometrically on a locally finite graph X, there exists an Aut(X)-imprimitivity system 
with finite blocks, so that the induced action of Aut(X) on X/ ∼ is discrete. 

Remark 3.6. (On rigidity) If Γ1 and Γ2 act geometrically on a locally finite graph X, 
and Γ1 is graphically discrete, then Γ1 and Γ2 are virtually isomorphic. Furthermore, their 
images in Aut(X/ ∼) are commensurable. 

Theorem 3.7. (MSSW) If Γ is a free product of residually finite16 graphically discrete 
groups, then Γ is action rigid17 within residually finite groups. 

Rather than focus on the proof, we will discuss examples of graphically discrete groups. 

Example 3.8. (Trofimov, 1984) Virtually nilpotent groups are graphically discrete. For 
example Zn , and the integer Heisenberg group. 

Example 3.9. (Bader–Furman–Sauer, 2020) Irreducible lattices in connected center-free 
real semisimple Lie groups with no compact factors, except for nonuniform lattices in 
PSL2(R). 

3.1. Boundary criterion. 

Proposition 3.10. Let G be a δ-hyperbolic group. Then G is graphically discrete if, 
whenever G acts geometrically on a locally finite graph X and for all x ∈ X(0), we have 
that 

(Aut(X))[x] → Homeo(∂X) 

has finite image. 

This can be used to show that groups are not graphically discrete, by exhibiting a suitable 
action and vertex. 

Corollary 3.11. Free groups are not graphically discrete, as they act geometrically on a 
tree, but the stabilizer of the center vertex allows you to flip anything away from the center 
— in particular there are infinitely many such automorphisms. 

Similarly lattices in Bourdon Fuschian buildings are not graphically discrete, because of 
the huge automorphism group of the building. 

3.2. 3-manifold groups. Let M be a connected closed orientable irreducible 3-manifold. 
Then Perelman’s proof of Thurston’s geometrization conjecture implies that M is either 
“geometric”18 or it is “non-geometric” and decomposes along a family of JSJ tori into 
hyperbolic and Seifert fibered components. 

16The intersection of all finite-index subgroups is the identity. 
17If Γ and Γ0 act geometrically on the same proper geodesic metric space, then Γ and Γ0 are virtually 

isomorphic. 
18It admits one of Thurston’s eight three-dimensional geometries. 
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Theorem 3.12. (Trofimov, Bader–Furman–Sauer, Dymarz; Kapovich–Leeb) If M is geo-
metric, then its fundamental group π1(M) is graphically discrete. 

Theorem 3.13. (MSSW) If M is non-geometric, then its fundamental group is graphically 
discrete. 

Proof ideas: 

• If M is non-geometric, the JSJ tori in M yield a graph of spaces decomposition of 
M with JSJ tree T . 

Figure 18. 

• Suppose that π1(M) acts geometrically on some locally finite graph X. Then the 
quasi-isometry invariants of the JSJ decomposition due to Kapovich–Leeb proves 
that Aut(X) also acts on the Baser(sp?) tree T . We can use this to show that 
X has a “coarse tree of spaces” decomposition mimicking Mf and invariant under 
Aut(X). 

Figure 19. 
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• Imprimitivity system: Replace these “edge spaces” with R-neighborhoods so 
that the graph X is equal to the union of the new edge spaces ∪e∈ET Xe. To write 
down an equivalence class, we say that x ∼ x0 if the set of edge spaces containing 
x is equal to the set of edge spaces containing x0 . Then, Aut(X) preserves this 
equivalence relation, and the equivalence classes are finite. This is the standard 
way to build an imprimitivity system from a graph of spaces. 

• Roughly, the action is discrete because if an automorphism fixes an edge space, it 
fixes the entire space. 

4. Emmy Murphy: Liouville cobordisms 

Abstract. In this talk we’ll discuss some interesting Liouville cobordisms arising in the 
particular case when the negative boundary is an overtwisted contact manifold. This will 
center on two independent constructions: concordances in the high-dimensional setting, 
and cobordisms with high-index (and therefore non-Weinstein) topological type. 

Given a Liouville domain M2n (compact, with boundary), there exists Weinstein handle 
attachments along isotropic19 spheres Sk−1 ⊆ ∂M . It is required that k ≤ n in order to be 
isotropic. We can only construct manifolds whose homotopy type is ≤ 1 dim(M).2 

Question: To what extent does the converse of this statement hold? Meaning if M is 
a smooth manifold with 1 -dimensional homotopy type, can it be built with this Liouville 2 
construction? 

Answer: In general the answer is no. The main counterexample is the manifold S2 × D2 , 
which doesn’t admit a Liouville structure. 

Contrast this with the following — in dimensions 2n ≥ 6, any smooth manifold with half 
homotopy type and a complex structure (on TM as a vector bundle) can be built out of 
Weinstein handles (Eliashberg, ’90). We can think of this complex structure on TM as the 
existence of a lift 

BUn 

M BO2n. TM 

We want to try to generalize this to not just talk about domains themselves, but about 
cobordisms. 

Recall we have this vector field Zλ which is required to be transverse to the boundary, 
and it could be inward or outward flowing. Denote by ∂−M the set where it is inwardly 
transverse, and ∂+M the set where it is outwardly transverse. 

19Recall this means that λ|Sk−1 = 0 
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Figure 20. 

Note 4.1. The positive boundary ∂+M is always nonempty due to volume conditions. 

To what extent does this depend on the contact geometry at ∂±M? Whether or not it 
is possible to glue handles onto ∂−M may depend on not only the topology, but on the 
geometry at ∂−M . 

Figure 21. 

Among contact manifolds, there are two types of contact structures: 

• Overtwisted manifolds: in some ways these are the nicest contact structures you 
could ever work with, and in some ways they are the worst. We have a much better 
understanding of what possibilities may occur here. Diffeomorphism plus a fram-
ing conditions implies contactomorphism in the setting of overtwisted manifolds. 
Another important property of overtwisted structures is that any codimension zero 
smooth embedding of a contact manifold is isotopic to a contact embedding (again 
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in the presence of a framing condition). So not only can we completely classify 
overtwisted manifolds, we can understand open sets — since we can just try to 
smoothly embed them in overtwisted manifolds.20 

• Tight contact manifolds: this is everything else. In the case where ∂−M = ∅, then 
∂+M is tight. In some sense these are the nicer ones, since this is what you run 
into in nature. 

Given any cobordism M (we are viewing M as a cobordism between ∂+M and ∂−M) with 
TM having a complex structure so that (M, ∂−M) has 1 -dimensional homotopy type, then2 
there exists a canonical Liouville structure on M such that ∂±M are both overtwisted. This 
is called a flexible cobordism. 

Figure 22. 

For contrast, there does not exist any Liouville manifold M3 such that ∂−M = S3 andtight 

∂+M = S3 This is due to Gromov in ’85.OT. 

20The discussion of overtwisted manifolds is due to Eliashberg ’89 for 3-dimensions, and Borman– 
Eliashberg–Murphy in ’15 for ≥ 50 dimensions. 
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Figure 23. 

There also does not exist a Liouville structure on S3 × [0, 1] = M such that ∂−M = S3 
OT 

and ∂+M = S3 However for other topologies of M , this is possible. tight. 

Figure 24. 

In higher dimensions, given any contact structure ξ on Y , there exists a Liouville structure 
on Y × [0, 1] = M such that ∂−M = (Y, ξOT) and ∂+M = (Y, ξtight). 

Thus there is some difference between the lower-dimensional and the higher dimensional 
cases, really depending upon the topology. 

Question: What about higher index homotopy types? That is, if H∗ (M, ∂−M) 6= 0 for 
∗ > n? 

Here things are completely unconstrained as well. 
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Theorem 4.2. (E-M): Let M be any smooth manifold with a complex structure on TM , 
and suppose that ∂+M and ∂−M are non-empty (so we are talking about an actual cobor-
dism). Then there is a Liouville structure on M so that ∂±M are both overtwisted.21 

This doesn’t depend on dimensions, so we can patch it together with the previous result 
(stick the concordance Y × [0, 1] on top, and assume that ∂+M is whatever you want it to 
be). 

Rough idea: We want to build a high-index handle. In, for example M = Dk × Dn−k , we 
can find a codimension two submanifold Σ so that M − Σ has half-dimensional homotopy 
type 

Figure 25. 

Then Σ − D2n−k(?) has a Liouville structure. Near Σ, we have that λM = (r
2 − 1)dθ + λΣ.� � 

This is not defined at r = 0, but dλM is. We will have that ZλM = r − 1 dr. At the end,r 
we add dθ back to λM . This gives a different Liouville structure, but it doesn’t change 
dλM . 

21Note that there is no half-dimensional homotopy type hypothesis in this result. 
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