Compactification without Truncation of Yang Mills Action
Shiksha Pandey, Michael Schulz

Department of Physics, Bryn Mawr College

= f de\/ —9p (Lgauge + Lcharged scaler T Lneutral scaler)a the bosons eat the DHv® = ( @ff(v)a”vy T 'Q?(u)aﬂul o Aﬁ(x))’

vertical moduli, and the scalers deforming away from flat F, =0 are
massive.

Abstract

We study the complete Kaluza-Klein expansion of Yang-Mills theory on a compact
manifold.

The moduli space of Yang-Mills gauge potentials is a principal fiber bundle, whose
metric determines the Kinetic terms for charged scalar fields in the Kaluza-Klein
expansion. We present an expression for the physical metric on moduli space in
terms of fiber metric, compensator field (geometrically, the bundle connection) and
base metric, taking motivations from the case of U(1) gauge theory. We then
determine the corresponding Kaluza-Klein expansion of D-dimesional Yang-Mills
action when compactified down to d-dimensions on the compact manifold Y. We
avoid the use of privileged expansion bases to highlight geometric features rather
than basis dependent simplifications.
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As in the U(1) case, the gauge field c,A%(x) eats ¢, ( 0%(v)ad,v¥ + 2 (w)ad, u')
to become massive vector of mass m, and the scalers u! deforming away
from F,,,,(u; y)=0 are massive due to V(u).

KK Expansion in Yang-Mills Theory

Notation and Geometry

In contract to the U(1) case, the covariant laplace operator depends on u, so its
eigenfunctions no longer provide convenient expansion basis, except on a single fiber
of a moduli space.

We will follow similar steps as in U(1) case. So we proceed keeping our considerations
same as before.

Discussion and Conclusion

and v as the coordinates on G, g(v) = e(@"ta) Given a basis {fa(¥)} of g-valued a N

Given a group G, the lie algebra g is given by: [t,, t,] = if,t. - Given a basis {t,} of g,
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Introduction

* As seen In both the U(1), and Yang-Mills theory,
consistent dimensional reduction requires introduction of
compensators explicitly, whereas for the untruncated
theory, that is not necessary as the compensators are
already present in the moduli space metric.

functions on Y, g(v;y) = e(@fa®),
For group G of gauge transformations, the lie algebra is then: [T o Tﬁ] =1 fzﬁT ye

So [faO). feW)] = ifoofr(¥)-

Letting u! denote the coordinates on A/G, A, = g 1 (v; Y)AS (w; y)g(v; y) +
0(v; y)d,,v*(y), where AY (u; y) denotes a fiducial representative of each gauge field,
and 0, (v; y)=—ig 1(v; y)dgs g(v;y). Now, let @ (v) be the left invariant 1-form on G.

After Albert Einstein published his paper on the theory of relativity, Kaluza and Klein
observed that 4D general relavity and 4D electromagnetism (plus a scalar field) can be

obtained from the compactificatino of SD gravity on a circle, when one truncates to

lowest Fourier modes on the circle. This compactification followed by truncation is

known as dimensional reduction. With this geometric unification, they pioneered a way

to describe a d-dimensional theory in a simpler way using D>d-dimensions. In the

dimensional reduction of gauge theories, it is necessary to introduce "compensator fields"

(Lagrange multipliers introduced by hand) to preserve gauge invariance. In the case of K

compactification, however, they appear on their own as connections on the fiber bundle.

Here, we will be identifying those compensators in case of U(1) gauge theory, and D-
dimensional Yang-Mills theory--which is a generalization of the former to a non-abelian

sroup—by studying their KK expansions.

U(1) Gauge Theory and Kaluza-Klein

Expansion

The action of a U(1) gauge theory on a D-d dimensional compact manifold Y of metric
1
4e?

GV is: § = —— [ dP~dy |G F™F, . where F,y, = 0,p4, — 0,4,

Now, consider the full space A of gauge connections A,,(y) on Y. This space is a
principal fiber bundle. The fiber G is the space of gauge transformations. The base A/

is the physical space of equivalence classes of gauge connections and the physical metric

on A, Gpy = fy AP~y . [gp_a g™ 0,A,,0,'A,, can be expressed in the fiber bundle

form as follows: ds?, = G;(wdu!dw + G,y (dv' + Qidu) (dvl' + Qy ]du] ),

Where we have: G,y = fy AP~y [gp_a g™ 0nY 0, Yy = miéyy,
mlz'ﬂl — fy dD_dyng—d gmn aIAmanYla

GI] — f,y dD_dy\/gD_d gmn SIAmSIAn 0 where V%Yl = —mIZYl and 5,Am(u; y) =
0;A,,(w; y) — 2;,,(u; y) is the horizontal derivative on the bundle. Here, we didn’t have

to introduce the compensator by hand; it was present in the physical metric already as
the bundle connection.

In the full untruncated theory, S = [ d?x/—gp(— i F™F,.)

Then, 8(v; y) = 0“(v)fa(¥).
The physical metric resulted from the compactification of the Yang-Mills action is then:

ds? = fy dP~ 4y GWDtr[dgAy, (u, v;y) dgA,(u, v; y).

KK Action without Truncation

Letting O(v) = @v‘ﬁ‘(v)Tadvﬁ denote the canonical R-invariant form on G,

ds* = Gy(uw)du'dw + G (0%(w)dv' + 0f (wdu') ( @g(v)dv‘s + .Qlﬁ(u)du]).

where, G,p(u) = fy APy GWDtr [fa(y) (—(DO)Z)fﬁ()’)]a

0§ (u) = 6B ()T (w),
Tpi(w) = [, d°~4yGWGE ™ er(f5(y) 9,45, (w;y),

Gy(w) = fy dP=4y | GV G ™ty [07° A,, 07° Ay, With 970 A,, (u, v; ) =

0/A,,(w,v;y) — Dy 2, (u; y), and Dy, p(y) = 0,,P(y) — i[A, P(X)].
We then promote u, v to u(x), v(x) in compactification, and obtain the following
components of the field strength: F,,,(x,y) = Fj,(x)f,(y),

Fum(x: y) = a;erm(u: v;y) + Dm(mva(x)fa(y))a

Frin(%,Y) = Finn(u,v;y) = g7 (0; Y) Fn(w; ) g (v, 3),
where D, v%(x) = 0%(v(x))d,v" (x) — A%(x).

Substituting these components into the D-dimensional Yang-Mills action:, we get the

same result as in U(1) case: S = f de\/_G(d) (Lgauge T Lcharged scater T Lneutral scater)s

1
where Lg,,4e = —rﬁdaﬁF“”VFﬁv,
1
Lcharged scaler — — 242 GaﬁD”va(x)Duvﬂ (x),

Lyeutral scaler =

~ 5726y (W' (08,0 () — V(u(x)),
and dgg = [, d°~ YV 6Wtr([f, (Nfp)];

Gap(w) = [, d” 2y 6Wtr £, (3) (-(D°)°) Fp )]

* For Yang-Mills theory, we determined the physical metric
on moduli space and found that its vertical metric G,z is

an R-invariant metric determined by the gauge covariant
Laplacian on Y, not the standard bi-invariant metric.

* |n the full untruncated theory, the KK gauge bosons eat
the vertical moduli, and the scalar potential lifts those
horizontal moduli corresponding to non-flat deformations
of the gauge field.

 The effective field theory below the compactification
scale exactly agrees with that of the dimensional
reduction ansatz. The U(1) and Yang-Mills stories are
analogous, but a noteworthy difference is that there is
no correspondingly simple global expansion in Laplace
eigenfunctions in the Yang-Mills case
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