Philadelphia Area Number Theory Seminar

Eva Goedhart
Bryn Mawr College

Diophantine Equations I:
New results via the modular approach

Abstract

After a brief overview of the modular approach to solving Diophantine equations, and a little history of the problem, I will prove that for p an odd prime, $\alpha \geq 1$, and $\beta, \gamma \geq 0$ integers, the equation $X^{2 N}+2^{2 \alpha} 5^{2 \beta} p^{2 \gamma}=Z^{5}$ has no solutions with $N, X, Z \in \mathbb{Z}^{+}, N>1$, and $\operatorname{gcd}(X, Z)=1$.

Wednesday, October 1, 2014 2:40-4:00PM
Bryn Mawr College
Department of Mathematics
Park Science Center 328

Tea and refreshments at 2:20PM in Park 355

