Philadelphia Area Number Theory Seminar

Eva G. Goedhart
Bryn Mawr College

Diophantine Equations II:
New results via Diophantine approximation

Abstract

I will present my recent result that for $a, b, k \in \mathbb{Z}^{+}$with $k \geq 7$, the equation $$
\left(a^{2} x^{k}-1\right)\left(b^{2} y^{k}-1\right)=\left(a b z^{k}-1\right)^{2}
$$ has no solutions in integers $x, y, z>1$ with $a^{2} x^{k} \neq b^{2} y^{k}$. Key to the proof are standard results on continued fractions and a Diophantine approximation theorem due to Bennett.

Wednesday, October 8, 2014
2:40-4:00PM
Bryn Mawr College
Department of Mathematics
Park Science Center 328

Tea and refreshments at 2:20PM in Park 355

