Mean Values and Value Distribution of $(L'/L)(1 + it, \pi)$

Abstract: For \(\pi \), a cuspidal automorphic representation of \(GL_m(\mathbb{A}_\mathbb{Q}) \), there is an associated \(L \)-function, \(L(s, \pi) \). We study the value distribution of its logarithmic derivative on the 1-line, \((L'/L)(1 + it, \pi) \). We are able to prove that for \(t \in [T, 2T] \), in some sense, \((L'/L)(1 + it, \pi) \) has an “almost” normal distribution with mean 0 and variance \(\sqrt{\log(y(T))}/y(T) \). An essential ingredient of the proof is the fact that our function of interest can be approximated by a Dirichlet polynomial with coefficients supported on prime powers.