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Introduction to Genomic Imprinting

Some mammalian genes have monoallelic expression

Mendelian Genes

where either only the paternal allele or only the maternal E
allele 1s expressed (Figure 1). This mammalian-specific 9

phenomenon 1s known as genomic imprinting. Differential i d

methylation of DNA on the cytosine of a CpG

dinucleotide determines the expression of imprinted genes

where the methylated allele 1s typically silenced and the

“Imprinted” Genes

unmethylated allele 1s expressed. These differentially

methylated regions (DMRs) are known to be maintained —ii

by DNA methyltransferase 1 (Dnmtl). Primary (1°)

DMRs are established in the germ cells and are
consistently maintained throughout growth and

development while secondary (2°) DMRs are acquired

during embryogenesis and are more variable.

i
Figure 1. Mendelian genes vs Imprinted genes.
Arrows represent expression, X represents lack
of expression and CH3 represents methylation.

Source: Vrana (2007) Journal of Mammalogy,
88(1):5-23.

The Role of Dnmtl in maintaining methylation at
secondary DMRs

Maintaining differential methylation 1s essential for proper expression of imprinted
genes. Failure to maintain methylation can result in imprinting disorders such as
Silver-Russell and Beckwith-Wiedemann syndromes, which affect growth and
development. We hypothesize that the variable methylation at secondary DMRs 1s

not well maintained and hence may need to be re-

acquired, involving multiple DNA

methyltransferases. To test this hypothesis, we studied the role of Dnmtl by
exploring the methylation patterns of primary and secondary DMRs at imprinted
genes 1n mice bearing a loss of function mutation in Dnmt/, resulting 1
compromised methyltransferase activity (P allele). The P mutation 1s categorized by a
substitution of the mouse-specific sequence with the rat-specific sequence in the
intrinsically disordered domain (IDD) of Dnmtl (Figure 2). When homozygous, the
mutant P allele results 1n late embryonic lethality, likely as a result of a dramatic
reduction 1 global methylation. In contrast, primary DMRs showed a less drastic
reduction 1n methylation when compared to WT and P/+ embryos, suggesting that
Dnmtl may function differently at different sequences (Shaffer ez al., 2015).
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Figure 2. A section of the IDD of Dnmt1 in different mammals and the
position of the P allele mutation. Modified from Shaffer ef al. (2015),
Genetics Vol.199, 533-541.

E15.5 litter

WT P+ |P/P| WT P+ P+ WT

Figure 3. 15.5 day old embryos with placentae from a cross
between two mice heterozygous for the P mutation. P/P
embryos and placentae are smaller in size as compared to
their WT and P/+ litter mates. Source: Shaffer ez al. (2015),
Genetics Vol.199, 533-541.

A comparison of methylation patterns in mutant embryos with wild-type or
heterozygous embryos can help us understand the role Dnmtl plays in
maintaining DMRs and can further our understanding into the regulation of
imprinted genes, especially how different epigenetic domains interact to regulate
expression at clusters of imprinted genes. We studied homozygous mutant

embryos using bisulfite mutagenesis to determine
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Methodology

Studying methylation pattern using bisulfite mutagenesis
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Figure 4. The chemistry of bisulfite mutagenesis. (A) Any unmethylated cytosine is converted into uracil. When amplified
by PCR, the uracil is replaced by thymine. Source: Kristensen and Hansen (2009), Clinical Chemistry 55:8 1471-1483.
(B) Methylcytosine remains as cytosine after PCR.
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Figure S. Flowchart showing the procedures followed in the experiment.

Methylation at 15.5 dpc in WT vs. P/P showed a greater decrease in 2°

DMRSs compared to 1° DMRs with some exceptions

Since the results from analyzing individual subclones were limited by sample size, methylation data at 15.5 dpc was
collected following Next Generation Sequencing (NGS). A total of 15 DMRs were analyzed. A summary of the results 1s

shown 1n Figure 9.
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Figure 9. Average methylation at the 15 analyzed DMRs in WT vs. P/P 15.5 dpc NGS data. Filled circles represent methylated

embryos.

sites, unfilled ones represent unmethylated sites,
while absence of circles represents anomalous
data.

In general, the data from 15.5 dpc embryos showed that most 2° DMRs have a drastic reduction in methylation in P/P as
compared to WT while most I DMRs have a small reduction (Figure 9). The exceptions are the 1° DMR H/9-1CR which

showe

d a drastic reduction, and the 2° DMRs Ndn which showed a small reduction and /gf2r-DMR1 which showed a

slight increase. A deeper analysis with individual sequences 1s needed to see what kind of methylation patterns these
DMRs have. The data in Figures 10 & 11 represent a small random subset of the total sequences analyzed of the 1" DMR

Snrpn
Snrpn

and the 2° DMR D/kl. This random subset showed the same general trend as we saw with the larger dataset with
1llustrating a less drastic reduction in methylation between WT and P/P as compared to D/k1. It 1s also noteworthy

that some of the 1° DMRs such as Rasgrfl have shown a bias towards the methylated allele (average methlylation

signifl

cantly over the expected 50% 1n the WT) even with much larger sample size compared to the 12.5 dpc dataset.

Methylation at 12.5 dpc in P/P vs. WT, P/+ varied by DMR Discussion and Future Directions
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We want to understand how methylation 1s maintained at secondary DMRs given their
high level of variability, and whether methylation is truly maintained vs. lost and
reacquired. Analyzing methylation across embryonic development in P/P mice might help
us understand how methylation 1s being maintained and/or reacquired and how these
processes are being hindered 1n the P/P mutants. Our future goal 1s to examine how the
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collecting embryos at different stages of growth. We plan to conduct a more thorough
analysis at the genome-wide level to see how this mutation 1s affecting non-DMR
methylation using Reduced Representation Bisulfite Sequencing (RRBS). As a long-term
goal, we plan to introduce the P allele mutation 1n BL6/castaneus hybrid mice so that we
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background. It will also give us better insight on the skew we are seeing in some of the
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behind this skew because 1t might compromise our ability to study methylation pattern
over time especially 1f methylation 1s being lost and reacquired.
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Figure 8. Methylation pattern at the 2° Pegl2 DMR in 12.5 dpc WT,P/+, P/P representative, and Tables 2 & 3 show average methylation (Shaffer ef al., 2015). An example of species-specific expression can be seen at Rasgrfl
cmbryos: Deeailsasdeseribedan T for the seven loci analyzed in each genetic background as which has paternal allele-specific expression in mice and rat but is non-imprinted in deer
well as whether or not the methylation between genotypes 1s significantly different. In general, most DMRs mice (Arnaud ef al., 2003, Shorter ef al., 2012). Since methylation 1s an important
showed a reduction in average methylation between WT & P/+ as compared to P/P (except IG-DMR), epigenetic factor that regulates gene expression, this study could help us understand

although whether the difference was significant varied according to genotypes and DMRs.

species-specific expression of imprinted genes better. Further, as the results showed that
many 1~ DMRs can maintain most methylation in the P/P mutants, Dnmt] might not be
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