Bryn Mawr College
 Department of Physics
 Mathematics Readiness Examination for Introductory Physics

Answers

1. CHOICE D: We are given $x-1=2$. To solve for x, add 1 to both sides of the equation:
$x-1=2$
$+1=+1$

$x=3$
so $x+1=(3+1)=4$
2. CHOICE B: \quad volume $=\pi R^{2} h=(3)(2 \mathrm{~cm})^{2}(5 \mathrm{~cm})=60 \mathrm{~cm}^{3}$
3. CHOICE C: If $x=3$ then $x^{2}+3=3^{2}+3=9+3=12$
4. CHOICE C: The area is 8 entire squares plus $0.8+0.4+0.9+0.1+0.5$ squares which is 10.7 squares. Each square has an area of so the total area is about 53.5.
5. CHOICE A: $\begin{gathered}(-2)(-6) \\ ------------\quad=-3 \\ -4\end{gathered}=\frac{12}{-4}=$
6. CHOICE D: $\quad\left(2 x y^{3}\right)^{3}=2^{3} x^{3}\left(y^{3}\right)^{3}=8 x^{3} y^{9}$
7. CHOICE A: $(2 x-1)(4 x+1)=2 x(4 x+1)+(-1)(4 x+1)$

$$
\begin{aligned}
& =8 x^{2}+2 x-4 x-1 \\
& =8 x^{2}-2 x-1
\end{aligned}
$$

8. CHOICE A: $\frac{4 \times 10^{-15}}{8 \times 10^{-12}}=0.5 \times 10^{-15+12}=0.5 \times 10^{-3}=5 \times 10^{-4}$.
9. CHOICE D: A common demominator is necessary:

$$
\begin{aligned}
& \frac{x^{2}}{y}+\frac{x}{y^{2}} \quad \text { multiply the first term by } \frac{y}{y} \text { to get } \\
& \frac{x^{2} y}{y^{2}}+\frac{x}{y^{2}}=\frac{x^{2} y+x}{y^{2}}
\end{aligned}
$$

10. CHOICE C: This is the difference between two squares:

$$
x^{2}-100=(x-10)(x+10)
$$

11. CHOICE A: $\left(5 \times 10^{8}\right)\left(6 \times 10^{-12}\right)=30 \times 10^{8-12}=30 \times 10^{-4}=3 \times 10^{-3}$
12. CHOICE A: $(2 x+3)-(x-2)=2 x+3-x+2=x+5$
13. CHOICE C: $\mathrm{A}^{2}+\mathrm{B}^{2}=\mathrm{C}^{2}=1+3=4$. So $\mathrm{x}=2$.
14. CHOICE C: Let x be the number. "Of" means multiply, "is" means equals:

$$
\begin{aligned}
& 1 \\
& --(x)=8 \\
& 3
\end{aligned}
$$

Multiply both sides by three: $x=24$
One-fourth of 24 is:

$$
\begin{aligned}
& 1 \\
& --(24)=6 \\
& 4
\end{aligned}
$$

15. CHOICE A: $x^{3} y=(-2)^{3} 5=(-8)(5)=-40$
16. CHOICE B: $25 \mathrm{~m}=(25 \mathrm{~m})(3$ feet $/ \mathrm{m})=75$ feet.
17. CHOICE C: $\left(x^{2}-3 x+2\right)-\left(3 x^{2}-5 x-1\right)$

$$
\begin{aligned}
& =x^{2}-3 x+2-3 x^{2}+5 x+1 \\
& =-2 x^{2}+2 x+3
\end{aligned}
$$

18. CHOICE D: $\frac{2 x}{3 y} \cdot \frac{9 y}{4 x^{2}}=\frac{2 \not x}{3 y} \cdot \frac{9 y}{4 x^{\chi}}=\frac{3}{2 x}$
19. CHOICE C: Factor the polynomial: $2 x^{2}+5 x-3=(2 x-1)(x+3)$
20. CHOICE D: $\quad \ln (a b)=\ln (a)+\ln (b)$
21. CHOICE C: We are asked for the absolute value: $|3-8|=|-5|=5$
22. CHOICE A: We need a common denominator, and $x y$ is a good choice:

$$
\begin{aligned}
& 2 \\
& -- \\
& x
\end{aligned} \quad \begin{aligned}
& 2 y \\
& --- \\
& x y
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 5 \\
& -- \\
& y
\end{aligned}=\begin{gathered}
5 x \\
--- \\
x y
\end{gathered}
$$

Adding the new expressions gives:

23. CHOICE E: Top and bottom are square, so each has an area of $x^{2 .}$ Each side (four of them) has area $x h$, so total surface area is $2 x^{2}+4 x h$.
24. $\mathrm{CHOICE} \mathrm{C}: \quad x-y=(-4)-(-7)=-4+7=3$
25. CHOICE D: $f(x)<0$ whenever the graph is below the x-axis: $x<-1$ or $x>3$
26. CHOICE D: In 20 years, there are four doubling periods (each 5 years), so the money increases by a factor of $2 \times 2 \times 2 \times 2=2^{4}=16$
27. CHOICE B: The second graph is the only one that is symmretical with respect to the y-axis, and thus even.
28. CHOICE D: Subtract $3 y$ from and add 4 to both sides of the equation:

$$
\begin{aligned}
& 7 y-4=16+3 y \\
& -3 y+4 \quad-3 y+4 \\
& ------------- \\
& 4 y=20
\end{aligned}
$$

Divide both sides by 4 :

$$
\frac{4 y}{--------------} \frac{20}{4}=5
$$

29. CHOICE D: $10(-2)(-3)(-1)=60=12$

30. CHOICE A: The graphs of $x-2 y=6$ and $x+y=-3$ intersect at the values of x and y that satisfy both equations. To get these, solve the two equations simultaneously by solving the first equation for $x=2 y+$ 6. Substitute into the second equation:

$$
\begin{aligned}
& (2 y+6)+y=-3 \\
& =3 y+6=-3
\end{aligned}
$$

Subtract 6 from both sides:

$$
\begin{gathered}
3 y+6=-3 \\
-6 \\
--------------9 \\
3 y=-9
\end{gathered}
$$

Divide both sides by three:

$$
\begin{array}{cc}
3 y= & -9 \\
--- & - \\
3 & 3 \\
y= & -3
\end{array}
$$

31. CHOICE E: $\quad 8^{-1 / 3} 9^{1 / 2}=1 \quad 3$

32. CHOICE B: $\sqrt[3]{-27}=-3$ because $(-3)(-3)(-3)=-27$. Remember that third roots can be negative!
33. CHOICE A: As x becomes very large and positive, y becomes very large because the term in x^{2} increases much faster than that in x. The same is true as x becomes very negative. Also recall an equation of the form $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}$ is a parabola.
34. CHOICE D: Recall that $\log _{a}(b)=c$ means $a^{c}=b$.

$$
\log _{3}(x+1)=2 \text { means }
$$

$$
\begin{aligned}
& 3^{2}=x+1 \\
& 9=x+1 \quad \text { Subtract one from both sides: } \\
& -1 \quad-1 \\
& ------- \\
& x=8
\end{aligned}
$$

35. CHOICE D: $\quad\left(-2 x^{2}\right)\left(3 x^{2} y\right)(-y)=6 x^{4} y^{2}$
36. CHOICE C: As x becomes very negative, 3^{x} becomes very small (i.e. $3^{0}=1$) and as x becomes large and positive, 3^{x} becomes very large.
37. CHOICE B: Since the expression is equal to zero, we can ignore the value of the denominator and set the numerator equal to zero. Thus,
$(2 x+1)(x-1)=0$
This expression holds when either factor is zero:

$$
\begin{aligned}
& 2 x+1=0 \\
& -1 \quad-1 \\
& \text {-------------- } \\
& 2 x=-1 \\
& \text {--- ---- } \\
& 2 \\
& x=1
\end{aligned}
$$

Thus, $x=-1 / 2,1$
38. CHOICE B: $13 a-15 b-a+2 b$ Factor with respect to a and b :
$=(13-1) a+(-15+2) b=12 a-13 b$
39. CHOICE D: $3^{14}=\left(3^{7}\right)^{2} \approx(2000)^{2} \approx 4 \times 10^{6}$.
40. CHOICE B: The length of segment BC is 6 , while the length of segment AB is 8. Since we have a right triangle, we can use Pythagorean Theorem:
$a^{2}+b^{2}=c^{2}$
Let c be the hypotenuse, or the unknown. Then,
$6^{2+} 8^{2}=c^{2}$

$$
36+64=100=c^{2}, \text { so } c=10
$$

41. CHOICE C: Substitute $a+2$ in for x :
42. CHOICE D: We know the graph is a line because x appears only to the first power, and falling to the right because its slope (the coefficient of x), is negative.
43. CHOICE B: Subtract b from both sides:
$a \mathrm{x}+b=3, a \neq 0$
$-b \quad-b$

$a x=3-b$
Divide both sides by a :
$a \mathrm{x}=3-b$
$a \quad a$
$\mathrm{x}=3-b$
a
44. CHOICE C: $\quad a+b$ is a factor of $a^{2}-b^{2}=(a+b)(a-b)$ and of $a^{3}+b^{3}=(a+$ b) $\left(a^{2}-a b+b^{2}\right)$.
45. CHOICE D: Subtract p from both sides of the equation:
$3 p>p+12$
$-p-p$
$2 p>12$
Divide both sides of the equation by 2 :
$2 p>12$
--- ---
22

$$
p>6
$$

46. CHOICE A: tangent is opposite over adjacent.
47. CHOICE D: $A^{a b}=\left(A^{a}\right)^{b}=\left(A^{b}\right)^{a}$
48. CHOICE B: The height of the rectangle occurs where the curve intersects the rectangle, at $x=0.5$. We can find the value of y at $x=0.5$ by substituting 0.5 for x :
$(0.5)^{2}+3(0.5)-1=0.75$
The area of the rectangle is thus $(0.75)(.2)=0.15$.
49. \quad CHOICE D: $\quad x y \rightarrow(2 x)(2 y)=4 x y$
50. CHOICE D: any finite quantity (including zero) raised to the zeroth power $=1$.
51. CHOICE C: $4-(-2+5)=4-(3)=1$
52. CHOICE E: \quad sine is opposite over hypotenuse $=3 / \mathrm{D}$. Using Pythagorus'

Theorem, $\mathrm{D}=5$. So $\sin (\mathrm{b})=0.3 / 0.5=0.6$.
53. CHOICE D: $\quad|x-2| \leq 1$ is equivalent to $1 \leq x \leq 3$.

If $x>2$, then $(x-2)$ is positive and $|x-2|=x-2 \leq 1$, which means $x \leq 3$.

If $x<2$, then $(x-2)$ is negative and $|x-2|=-(x-2)=2$, or $-x+2=2$, so $x \geq 1$.
54. $\mathrm{CHOICE} \mathrm{C}: \quad \frac{3 / 2}{2 / 3}=\frac{3}{2} \frac{3}{2}=\frac{9}{4}$
55. CHOICE C: Let l be the length of the rectangle, and w its width.
$l=2 w+3$
We are given the perimeter, $2 l+2 w=90$.
Using the first equation in the second:
$2(2 w+3)+2 w$

$$
=6 w+6=90
$$

$$
-6-6
$$

$6 w=84$
$6 \quad 6$
$w=14$
56. CHOICE A: $\quad 4(s+2)=(4 \times s)+(4 \times 2)=4 s+8$
57. CHOICE A: $\quad 3 / 4-1 / 7=\frac{3}{4}-\frac{1}{7}=\frac{21-4}{28}=\frac{17}{28}$
58. CHOICE B: Subtract one from both sides:
$1-5 x<3$
$-1 \quad-1$
$-5 x<2$

Divide both sides by -5 , and remember to switch the sign of the inequality because we are dividing by a negative number:
$-5 x<2$
----- ---
$x>-2 / 5$
59. CHOICE B: The function has an absolute minimum at $x=1$, the lowest point on the graph between 0 and 4 . The other low point at $x=3$ is a "local minimum."
60. CHOICE A: $3^{2}+4^{2}=\mathrm{D}^{2}=25$ so $\mathrm{D}=5$.
61. CHOICE B: $(2 \sqrt{3})(3 \sqrt{6})=6 \sqrt{18}=6 \sqrt{(2)(9)}=$

$$
6 \sqrt{9} \sqrt{2}=(6)(3) \sqrt{2}=18 \sqrt{2}
$$

62. CHOICE B: $1-\sin ^{2} \theta=\cos ^{2} \theta$ (a trigonometric identity).
63. CHOICE A: $\quad f(x)=\cos (3 x)$, then $f(\pi / 6)=\cos (\pi / 2)=0$.
64. CHOICE A: The circumference of a circle is $2 \pi R$.
65. CHOICE E: The sine curve has a y-intercept at zero, increases as x increases to $\pi / 2$ and decreases as x decreases to $-\pi / 2$.
66. CHOICE E: $\csc \theta=1 / \sin \theta$ and $\tan \theta=\sin \theta / \cos \theta$, so
$\sin \theta \tan \theta \csc ^{2} \theta=\sin \theta(\sin \theta / \cos \theta)\left(1 / \sin ^{2} \theta\right)=1 / \cos \theta=\sec \theta$.
67. CHOICE B: $\tan \theta=\sin \theta / \cos \theta$, and $\cos (-\pi / 2)$ is zero. A zero in the denominator renders the expression undefined.
68. CHOICE E: The area of a circle is πR^{2}
69. CHOICE B: the sum of the angles in a triangle add up to 180 degrees.
70. CHOICE C: Taking the slope between $x=0$ and $x=5$, we see that:

$$
\text { slope }=\begin{aligned}
& \text { change in } y \\
& --------- \\
& \text { change in } x
\end{aligned}=\begin{aligned}
& 20-5 \\
& ------ \\
& 5-0
\end{aligned}=\begin{gathered}
15 \\

\end{gathered}=3
$$

71. CHOICE E: $\quad\left(\frac{100 \mathrm{~km}}{\text { minute }}\right)=\left(\frac{100 \mathrm{~km}}{\text { minute }}\right)\left(\frac{5 \text { miles }}{8 \mathrm{~km}}\right)\left(\frac{1 \text { minute }}{60 \text { seconds }}\right)$

$$
=\frac{500 \text { miles }}{480 \text { seconds }}=1 \frac{\text { mile }}{\text { second }}
$$

