Bryn Mawr College
 Department of Physics
 Mathematics Readiness Examination for Introductory Physics

There are 71 questions and you should do this exam in two and a half hours. Do not use any books, calculators, or computers.

1. If $x-1=2$, then $x+1=$
(A) 1
(B) 2
(C) 3
(D) 4
(E) -2
2. A cylinder has a circular cross section of diameter 4 cm (centimeters) and length 5 cm . The volume is approximately
(A) $600 \mathrm{~cm}^{3}$
(B) $60 \mathrm{~cm}^{3}$
(C) $6,000 \mathrm{~cm}^{3}$
(D) $0.6 \mathrm{~cm}^{3}$
(E) $6 \mathrm{~cm}^{3}$
3. If $x=3$, then $x^{2}+3=$
(A) 6
(B) 9
(C) 12
(D) 27
(E) 3
4. The area under this line between $x=1$ and $x=5$ is about
(A) 15
(B) 5
(C) 55
(D) 25
(E) 155

5. $\frac{(-2)(-6)}{-4}=$
(A) -3
(B) -2
(C) 2
(D) 3
(E) -12
6. $\left(2 x y^{3}\right)^{3}=$
(A) $6 x^{3} y^{9}$
(B) $8 x^{4} y^{6}$
(C) $8 x^{4} y^{6}$
(D) $8 x^{3} y^{9}$
(E) $6 x^{3} y^{9}$
7. $(2 x-1)(4 x+1)=$
(A) $8 x^{2}-2 x-1$
(B) $8 x^{2}-6 x-1$
(C) $8 x^{2}-1$
(D) $6 x$
(E) $-6 x$
8. C3. $\frac{4 \times 10^{-15}}{8 \times 10^{-12}}=$
(A) 5×10^{-4}
(B) 2×10^{-4}
(C) 5×10^{-28}
(D) 5×10^{4}
(E) 2×10^{-27}
9. A13. $\left(\frac{x^{2}}{y}\right)+\left(\frac{x}{y^{2}}\right)=$
(A) $\frac{x}{y}$
(B) $\frac{y}{x}$
(C) $x y$
(D) $\frac{x^{2} y+x}{y^{2}}$
(E) $\frac{x^{2} y^{2}+x y^{2}}{x^{2} y^{2}}$
10. $x^{2}-100=$
(A) $(x+10)^{2}$
(B) $(x-10)^{2}$
(C) $(x+10)(x-10)$
(D) $(x-50)(x-50)$
(E) $(x-2)(x-50)$
11. $\left(5 \times 10^{8}\right)\left(6 \times 10^{-12}\right)=$
(A) 3×10^{-3}
(B) 3×10^{-19}
(C) 3×10^{-4}
(D) 3×10^{4}
(E) 2×10^{-27}
12. $(2 x+3)-(x-2)=$
(A) $x+5$
(B) $x+1$
(C) 3
(D) 7
(E) $3 x+5$
13. If $\mathrm{A}=\sqrt{3}$ and $\mathrm{B}=1$ in the following triangle, then $\mathrm{C}=$

(A) $1 / \sqrt{3}$
(B) $1 / 2$
(C) 2
(D) $\sqrt{2}$
(E) $\sqrt{5}$
14. If $\frac{1}{3}$ of a number is 8 , then what is $\frac{1}{4}$ of the number?
(A) $\frac{1}{12}$
(B) $\frac{1}{6}$
(C) 6
(D) 12
(E) 24
15. If $x=-2$ and $y=5$, then $x^{3} y=$
(A) -40
(B) -30
(C) 30
(D) 40
(E) 12
16. If there are about three feet in a meter, 25 meters is about
(A) 8 feet
(B) 75 feet
(C) 450 feet
(D) 4.5 feet
(E) 0.45 feet
17. $\left(x^{2}-3 x+2\right)-\left(3 x^{2}-5 x-1\right)=$
(A) $4 x^{2}-8 x+1$
(B) $2 x^{2}+2 x+3$
(C) $-2 x^{2}+2 x+3$
(D) $-2 x^{2}-2 x+1$
(E) $2 x^{2}+2 x+3$
18. $\frac{2 x}{3 y} \cdot \frac{9 y}{4 x^{2}}=$
(A) $6 x y$
(B) $\frac{3 y}{2 x}$
(C) $\frac{8 x^{3}}{9 y^{2}}$
(D) $\frac{3}{2 x}$
(E) $\frac{8 x^{3}}{9 y^{2}}$
19. $2 x^{2}+5 x-3=$
(A) $(2 x-3)(x+1)$
(B) $(2 x-3)(x-1)$
(C) $(2 x-1)(x+3)$
(D) $(2 x+1)(x-3)$
(E) $(2 x-1)(x-1)$
20. $\ln (a b)=$
(A) $10^{a b}$
(B) $e^{a b}$
(C) $e^{(a+b)}$
(D) $\ln (a)+\ln (b)$
(E) $a \ln (b)$
21. $|3-8|=$
(A) -11
(B) -5
(C) 5
(D) 11
(E) 12
22. $\frac{2}{x}+\frac{5}{y}=$
(A) $\frac{2 y+5 x}{x y}$
(B) $\frac{2 x+5 y}{x y}$
(C) $\frac{-7}{x+y}$
(D) $\frac{7}{x y}$
(E) $\frac{-7}{x+y}$
23. The box pictured below has a square base and a closed top. Express its surface area in terms of x and h.

(A) $x^{2}+4 x h$
(B) $8 x+4 h$
(C) $4 x+h$
(D) $h x^{2}$
(E) $2 x^{2}+4 x h$
24. If $x=-4$ and $y=-7$, then $x-y=$
(A) -11
(B) -3
(C) 3
(D) 11
(E) 28
25. If $f(x)$ is a function whose graph is the parabola sketched below, then $f(x)<0$ whenever

(A) $x<0$
(B) $x<3$
(C) $x>1$
(D) $x<-1$ or $x>3$
(E) $-1<x<3$
26. If money in a bank doubles every 5 years, then by what factor does it increase over a 20 year period?
(A) 4
(B) 8
(C) 12
(D) 16
(E) 20
27. Definition: A function is even if $f(-x)=f(x)$ for each x in the domain of f. Which of the functions whose graphs are shown is even?

(B)

(E)

28. If $7 y-4=16+3 y$, then $y=$
(A) $6 / 5$
(B) 2
(C) 3
(D) 5
(E) -5
29. $(10)(-1 / 5)(-2)(3)=$
(A) -12
(B) -3
(C) 10
(D) 12
(E) -10
30. The y-coordinate of the intersection of the graphs of $x-2 y=6$ and $x+y=-3$ is
(A) -3
(B) -2
(C) -1
(D) 1
(E) 3
31. $8^{-1 / 3} 9^{1 / 2}=$
(A) 6
(B) -6
(C) $(72)^{-\frac{1}{6}}$
(D) $\frac{2}{3}$
(E) $\frac{3}{2}$
32. $\sqrt[3]{-27}=$
(A) -9
(B) -3
(C) 3
(D) 9
(E) 54
33. Which of the following best resembles the graph of $y=\frac{1}{2} x^{2}-3 x+1$?
(A)
(B)
(C)
(D)
(E)

34. If $\log _{3}(x+1)=2$, then $x=$
(A) 5
(B) 6
(C) 7
(D) 8
(E) $\frac{2}{\log _{3}}-1$
35. $\left(-2 x^{2}\right)\left(3 x^{2} y\right)(-y)=$
(A) $-6 x^{2} y$
(B) $-x^{2}$
(C) $6 x^{4} y$
(D) $6 x^{4} y^{2}$
(E) $-x^{2}$
36. Which of the following curves best resembles the graph of $f(x)=3^{x}$?
(A)

(B)

(C)

(D)

(E)

37. If $\frac{(2 x+1)(x-1)}{(x+1)}=0$, then $x=$
(A) -1 or 1
(B) $-\frac{1}{2}$ or 1
(C) $-\frac{1}{2}, 1$, or -1
(D) $\frac{1}{2}$ or -1
(E) $\frac{1}{2}, 1$, or -1
38. $13 a-15 b-a+2 b=$
(A) $13-13 b$
(B) $12 a-13 b$
(C) $14 a-17 b$
(D) $12 a^{2}-13 b^{2}$
(E) $13 a+13 b$
39. The symbol "§" means "is approximately equal to." Given that $3^{7} \cong 2000$, then $3^{14} \cong$
(A) 4,000
(B) 40,000
(C) 400,000
(D) $4,000,000$
(E) $2,000^{8}$
40. In the given figure, the distance between points A and C is
(A) 8
(B) 10
(C) 12
(D) 14
(E) 16

41. If $f(x)=\frac{2 x+6}{x+2}$, then $f(a+2)=$
(A) $\frac{5}{2}$
(B) $\frac{2 a+8}{a+4}$
(C) $\frac{2 a+10}{a+4}$
(D) $\frac{2 a+6}{a+2}$
(E) $\frac{2 a+6}{a+4}$
42. The graph of the equation $y=-5 x+3$ is
(A) a horizontal line
(B) a line rising to the right
(C) a vertical line
(D) a line falling to the right
(E) not a line
43. If $a x+b=3$ and $a \neq 0$, then $x=$
(A) $\frac{b+3}{a}$
(B) $\frac{3-b}{a}$
(C) $\frac{b-3}{a}$
(D) $b-3$
(E) $3-b$
44. The quantity $a+b$ is a factor of how many of the following:

$$
a^{2}-b^{2} \quad a^{2}+b^{2} \quad a^{3}-b^{3} \quad a^{3}+b^{3}
$$

(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
45. $3 p>p+12$ is equivalent to
(A) $p>1$
(B) $p>3$
(C) $p>4$
(D) $p>6$
(E) $p>15$
46. In the triangle shown, $\tan (a)=$

(A) A / B
(B) B / A
(C) B / C
(D) A / C
(E) C / A
47. $A^{a b}=$
(A) A^{a+b}
(B) $b A^{a}$
(C) $\frac{A^{a}}{A^{b}}$
(D) $\left(A^{a}\right)^{b}$
(E) $A^{a} A^{b}$
48. The area of the rectangle pictured below is
(A) 0.015
(B) 0.15
(C) 0.2
(D) 0.35
(E) 0.75

49. Suppose the sides of a rectangle with length x and width y are each doubled. The increase in the area of the rectangle is
(A) $x y$
(B) $2 x y$
(C) $3 x y$
(D) $4 x y$
(E) $x^{2} y^{2}$
50. $4^{0}(4$ raised to the zeroth power $)=$
(A) 2
(B) 0
(C) 4
(D) 1
(E) 0.25
51. $4-(-2+5)=$
(A) 11
(B) 7
(C) 1
(D) -3
(E) -1
52. In the triangle shown, $\sin (b)=$

(A) 1.2
(B) 1.33
(C) 0.75
(D) 0.8
(E) 0.6
53. $|x-2| \leq 1$ is equivalent to
(A) $x \geq 3$
(B) $x \leq 1$
(C) $-3 \leq x \leq-1$
(D) $1 \leq x \leq 3$
(E) $-3 \leq x \leq 3$
54. $\frac{3 / 2}{2 / 3}=$
(A) 0
(B) $4 / 9$
(C) $9 / 4$
(D) 1
(E) 6
55. The length of a certain rectangle is 3 meters more than twice its width. If the perimeter of the rectangle is 90 meters, then the width of the rectangle is
(A) 6 m
(B) 12 m
(C) 14 m
(D) 16 m
(E) 29 m
56. $4(s+2)=$
(A) $4 s+8$
(B) $4 s+6$
(C) $4 s+2$
(D) $s+8$
(E) $\frac{1}{4}(s+2)$
57. $3 / 4-1 / 7=$
(A) $17 / 28$
(B) $25 / 28$
(C) $1 / 14$
(D) $2 / 47$
(E) $3 / 14$
58. If $1-5 x<3$, then
(A) $x<-\frac{2}{5}$
(B) $x>-\frac{2}{5}$
(C) $x<\frac{2}{5}$
(D) $x>\frac{5}{2}$
(E) $x>\frac{5}{2}$
59. Definition: A function $f(x)$ has a minimum value at the number c if $f(c) \leq f(x)$ for every x in the domain of $f(x)$. If the domain of the function whose graph appears on the right is $[0,4]$, at which number does the function have a minimum value?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

60. The side D in this triangle is
$\frac{4 \underbrace{b}_{c}}{3}$
(A) 5
(B) 25
(C) $\sqrt{12}$
(D) $\sqrt{5}$
(E) $\sqrt{7}$
61. $(2 \sqrt{3})(3 \sqrt{6})=$
(A) 18
(B) $18 \sqrt{2}$
(C) 108
(D) $\sqrt{108}$
(E) $6 \sqrt{108}$
62. $1-\sin ^{2} \theta=$
(A) $-\cos ^{2} \theta$
(B) $\cos ^{2} \theta$
(C) $\cos \theta$
(D) $\csc ^{2} \theta$
(E) $-\cos (2 \theta)$
63. If $f(x)=\cos (3 x)$, then $f(\pi / 6)=$
(A) 0
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
(E) 1
64. The circumference of a circle of radius R is
(A) $2 \pi R$
(B) R^{2}
(C) $\pi^{2} R$
(D) $\pi^{2} R^{2}$
(E) πR^{2}
65. Which of the following best represents the graph of $y=\sin x$ for x between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$
(A)

(B)

(D)
(E)

66. $\sin \theta \tan \theta \csc ^{2} \theta=$
(A) $\tan \theta \sin ^{2} \theta$
(B) $\cos \theta$
(C) $\sin \theta$
(D) $\tan \theta$
(E) $\sec \theta$
67. For which value of x is $\tan x$ not defined?
(A) $-\pi$
(B) $-\frac{\pi}{2}$
(C) 0
(D) $\frac{\pi}{4}$
(E) $\frac{\pi}{3}$
68. The area of a circle of radius R is
(A) $2 \pi R$
(B) R^{2}
(C) $\pi^{2} R$
(D) $\pi^{2} R^{2}$
(E) πR^{2}
69. The angle a in this triangle is

(A) 45
(B) 60
(C) 120
(D) 30
(E) 90
70. The slope of line A is
(A) 4.0
(B) 3.3
(C) 3.0
(D) 0.25

71. If there are $(5 / 8)$ mile per km (kilometer) and 60 seconds in a minute, then $100 \mathrm{~km} /$ minute is about
(A) 3 miles/second
(B) 4,000 miles/second
(C) 6 miles / second
(D) 0.1 miles / second
(E) 1 mile $/$ second

